Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Multi-Robot Systems - Bin-Bin Hu, Hai-Tao Zhang

Multi-Robot Systems

Coordinated Fencing Control and Applications
Buch | Hardcover
200 Seiten
2024 | 2024 ed.
Springer Verlag, Singapore
978-981-97-9213-9 (ISBN)
CHF 269,60 inkl. MwSt
  • Titel nicht im Sortiment
  • Artikel merken
Multi-robot coordinated fencing, where a team of robots forms a protective formation around a target, has garnered significant attention and proven useful in practical applications such as area convoying. However, real-world scenarios often involve complex target characteristics, including varying dynamics and multiple targets, which can pose challenges in maintaining the formation. Additionally, due to sensor costs and environmental constraints, robots may only have access to directional constraint information, presenting further challenges.



This book highlights cooperative fencing approaches for multi-robot systems and their practical applications to different unmanned surface (ground) vehicles, providing an overview of research trends and future directions in coordinated fencing. Firstly, a basic fencing controller using neighboring angle repulsion for a constant-velocity target is designed, laying the groundwork for complex fencing missions. Then, for more complex fencing with an evenly rotating formation, a distributed controller is developed using input-to-state stability, achieving coordinated fencing under intermittently varying topologies. For more complex varying-velocity targets, a distributed fencing controller based on output regulation theory is proposed. For general target fencing missions in both 2D and 3D, a formal long-term task execution framework is developed using control barrier functions. Moreover, unlike previous methods that rely on the relative position between the robot and the target, a distributed bearing-only fencing control algorithm based on the persistent-excitation condition is developed, requiring only comparatively inexpensive sensors. Finally, this exploration into the theory and application of coordinated fencing control provides guidelines for robust, efficient, and complex practical implementations of multi-robot missions.

Bin-Bin Hu obtained the Ph.D. degree in control science and engineering from Huazhong University of Science and Technology, Wuhan, China, in 2022. From August 2022 to August 2024, he was Research Fellow with the School of Mechanical and Aerospace Engineering, at Nanyang Technological University, Singapore. Currently, he is Post-Doctoral Fellow with the University of Groningen, Groningen, the Netherlands. He has published more than 20 peer-reviewed journal and conference papers in the robotics and automatic control fields, including IEEE Transactions on Robotics, IEEE Transactions on Automatic Control, Automatica, etc. He was the recipient of the excellent doctoral dissertation award of the Chinese Association of Automation in 2023. His research interests include control of networked systems, multi-robot systems, and autonomous navigation. Hai-Tao Zhang received the B.E. and Ph.D. degrees from the University of Science and Technology of China, Hefei, China, in 2000 and 2005, respectively. During January to December 2007, he was Postdoctoral Researcher with the University of Cambridge, Cambridge, UK.  Currently, he is Full Professor with Huazhong University of Science and Technology, Wuhan, China. His research interests include swarming intelligence, model predictive control, and unmanned system cooperation control. He is a Cheung Kong Young Scholar. He is/was an associate editor of IEEE Transactions on Systems, Man and Cybernetics-Systems, IEEE Transactions on Circuits and Systems II and Asian Journal of Control.

Introduction to Coordinated Multi-Robot Fencing Control.- Distributed Fencing Control via Neighboring Angle Repulsion.- Distributed Fencing Control Via Input-To-State Stability.- Distributed Fencing Control via Ouput Regulation Theory.- Distributed Fencing Control via Long-Term Task Execution.- Coordinated Multiple-Target Fencing Control and Collision Avoidance.- Coordinated Multiple-Scattered-Targets Fencing via Flexible Subgrouping and Ordering.- Bearing-Only Fencing via Persistent-Exciting Condition.- Summary and Future Work.

Erscheinungsdatum
Reihe/Serie Cognitive Intelligence and Robotics
Zusatzinfo 62 Illustrations, color; 5 Illustrations, black and white
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Bearing Constraints • Cooperative Control • multi-agent system • multi-robot systems • Target Fencing • Unmanned Vehicle Coordination
ISBN-10 981-97-9213-4 / 9819792134
ISBN-13 978-981-97-9213-9 / 9789819792139
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20