Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring - Ehud Friedgut, Vojtech Rodl, Andrzej Rucinski, Prasad Tetali

A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring

Buch | Softcover
66 Seiten
2005 | illustrated Edition
American Mathematical Society (Verlag)
978-0-8218-3825-9 (ISBN)
CHF 94,25 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Presents generalization of Szemeredi's Regularity Lemma to a certain hypergraph setting.
Let $/cal{R}$ be the set of all finite graphs $G$ with the Ramsey property that every coloring of the edges of $G$ by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let $G(n,p)$ be the random graph on $n$ vertices with edge probability $p$. We prove that there exists a function $/widehat c=/widehat c(n)=/Theta(1)$ such that for any $/varepsilon > 0$, as $n$ tends to infinity, $Pr/left[G(n,(1-/varepsilon)/widehat c//sqrt{n}) /in /cal{R} /right] /rightarrow 0$ and $Pr /left[G(n,(1+/varepsilon)/widehat c//sqrt{n}) /in /cal{R}/ /right] /rightarrow 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemeredi's Regularity Lemma to a certain hypergraph setting.

Introduction Outline of the proof Tepees and constellations Regularity The core section (Proof of Lemma 2.4) Random graphs Summaryt, further remarks, glossary Bibliography.

Erscheint lt. Verlag 1.2.2006
Reihe/Serie Memoirs of the American Mathematical Society
Zusatzinfo illustrations
Verlagsort Providence
Sprache englisch
Gewicht 165 g
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 0-8218-3825-3 / 0821838253
ISBN-13 978-0-8218-3825-9 / 9780821838259
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?