Stability Theorems in Geometry and Analysis
Seiten
1994
|
1994 ed.
Kluwer Academic Publishers (Verlag)
978-0-7923-3118-6 (ISBN)
Kluwer Academic Publishers (Verlag)
978-0-7923-3118-6 (ISBN)
Covers the metric theory of spatial mappings and incorporates results in the theory of quasi-conformal, quasi-isometric and other mappings. The main subject of this text is the study of the stability problem in Liouville's theorem on conformal mappings in space.
1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. * Throughout the book, lR. stands for the n-dimensional arithmetic space of points x = (X},X2,'" ,xn)j Ixl is the length of n n a vector x E lR. and (x, y) is the scalar product of vectors x and y in lR. , i.e., for x = (Xl, X2, *.* , xn) and y = (y}, Y2,**., Yn), Ixl = Jx~ + x~ + ...+ x~, (x, y) = XIYl + X2Y2 + ...+ XnYn. n Given arbitrary points a and b in lR. , we denote by [a, b] the segment that joins n them, i.e. the collection of points x E lR. of the form x = >.a + I'b, where>. + I' = 1 and >. ~ 0, I' ~ O. n We denote by ei, i = 1,2, ...,n, the vector in lR. whose ith coordinate is equal to 1 and the others vanish. The vectors el, e2, ...,en form a basis for the space n lR. , which is called canonical. If P( x) is some proposition in a variable x and A is a set, then {x E A I P(x)} denotes the collection of all the elements of A for which the proposition P( x) is true.
1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. * Throughout the book, lR. stands for the n-dimensional arithmetic space of points x = (X},X2,'" ,xn)j Ixl is the length of n n a vector x E lR. and (x, y) is the scalar product of vectors x and y in lR. , i.e., for x = (Xl, X2, *.* , xn) and y = (y}, Y2,**., Yn), Ixl = Jx~ + x~ + ...+ x~, (x, y) = XIYl + X2Y2 + ...+ XnYn. n Given arbitrary points a and b in lR. , we denote by [a, b] the segment that joins n them, i.e. the collection of points x E lR. of the form x = >.a + I'b, where>. + I' = 1 and >. ~ 0, I' ~ O. n We denote by ei, i = 1,2, ...,n, the vector in lR. whose ith coordinate is equal to 1 and the others vanish. The vectors el, e2, ...,en form a basis for the space n lR. , which is called canonical. If P( x) is some proposition in a variable x and A is a set, then {x E A I P(x)} denotes the collection of all the elements of A for which the proposition P( x) is true.
1. Introduction.- 2. Möbius Transformations.- 3. Integral Representations and Estimates for Differentiable Functions.- 4. Stability in Liouville’s Theorem on Conformal Mappings in Space.- 5. Stability of Isometric Transformations of the Space ?n.- 6. Stability in Darboux’s Theorem.- 7. Differential Properties of Mappings with Bounded Distortion and Conformal Mappings of Riemannian Spaces.- References.
| Erscheint lt. Verlag | 30.9.1994 |
|---|---|
| Reihe/Serie | Mathematics and Its Applications ; 304 | Mathematics and Its Applications ; 304 |
| Zusatzinfo | XII, 394 p. |
| Sprache | englisch |
| Maße | 156 x 234 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 0-7923-3118-4 / 0792331184 |
| ISBN-13 | 978-0-7923-3118-6 / 9780792331186 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90
Eine anwendungsorientierte Einführung
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95