Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Sturm-Liouville Operators, Their Spectral Theory, and Some Applications - Fritz Gesztesy, Roger Nichols, Maxim Zinchenko

Sturm-Liouville Operators, Their Spectral Theory, and Some Applications

Buch | Hardcover
927 Seiten
2024
American Mathematical Society (Verlag)
978-1-4704-7666-3 (ISBN)
CHF 219,95 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Offering an in-depth exploration of modern Sturm-Liouville theory, the book examines Weyl–Titchmarsh and oscillation theories, boundary data maps, and operators with singular potentials. It showcases diverse examples from Floquet theory to scattering and provides essential appendices on spectral theory and operator extensions.
This book provides a detailed treatment of the various facets of modern Sturm-Liouville theory, including such topics as Weyl:ndash;Titchmarsh theory, classical, renormalized, and perturbative oscillation theory, boundary data maps, traces and determinants for Sturm-Liouville operators, strongly singular Sturm–Liouville differential operators, generalized boundary values, and Sturm-Liouville operators with distributional coefficients. To illustrate the theory, the book develops an array of examples from Floquet theory to short-range scattering theory, higher-order KdV trace relations, elliptic and algebro-geometric finite gap potentials, reflectionless potentials and the Sodin-Yuditskii class, as well as a detailed collection of singular examples, such as the Bessel, generalized Bessel, and Jacobi operators. A set of appendices contains background on the basics of linear operators and spectral theory in Hilbert spaces, Schatten-von Neumann classes of compact operators, self-adjoint extensions of symmetric operators, including the Friedrichs and Krein-von Neumann extensions, boundary triplets for ODEs, Krein-type resolvent formulas, sesquilinear forms, Nevanlinna-Herglotz functions, and Bessel functions.

Fritz Gesztesy, Baylor University, Waco, TX, Roger Nichols, The University of Tennessee at Chattanooga, TN, and Maxim Zinchenko, University of New Mexico, Albuquerque, NM.

Introduction
A bit of physical motivation
Preliminaries on ODEs
The regular problem on a compact interval $[a,b]/subset/mathbb{R}$
The singular problem on $(a,b)/subseteq /mathbb{R}$
The spectral function for a problem with a regular endpoint
The 2 x 2 spectral matrix function in the presence of two singular interval endpoints for the problem on $(a,b)/subseteq/mathbb{R}$
Classical oscillation theory, principal solutions, and nonprinicpal solutions
Renormalized oscillation theory
Perturbative oscillation criteria and perturbative Hardy-type inequalities
Boundary data maps
Spectral zeta functions and computing traces and determinants for Sturm-Liouville operators
The singular problem on $(a,b)/subseteq/mathbb{R}$ revisited
Four-coefficient Sturm-Liouville operators and distributional potential coefficients
Epilogue: Applications to some partial differnetial equations of mathematical physics
Basic facts on linear operators
Basics of spectral theory
Classes of bounded linear operators
Extensions of symmetric operators
Elements of sesquilinear forms
Basics of Nevanlinna-Herglotz functions
Bessel functions in a nutshell
Bibliography
Author index
List of symbols
Subject index

Erscheinungsdatum
Reihe/Serie Colloquium Publications
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4704-7666-5 / 1470476665
ISBN-13 978-1-4704-7666-3 / 9781470476663
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95