Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Python Feature Engineering Cookbook

A complete guide to crafting powerful features for your machine learning models

(Autor)

Buch | Softcover
396 Seiten
2024 | 3rd Revised edition
Packt Publishing Limited (Verlag)
978-1-83588-358-7 (ISBN)
CHF 59,30 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Leverage the power of Python to build real-world feature engineering and machine learning pipelines ready to be deployed to production

Key Features

Craft powerful features from tabular, transactional, and time-series data
Develop efficient and reproducible real-world feature engineering pipelines
Optimize data transformation and save valuable time
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionStreamline data preprocessing and feature engineering in your machine learning project with this third edition of the Python Feature Engineering Cookbook to make your data preparation more efficient.
This guide addresses common challenges, such as imputing missing values and encoding categorical variables using practical solutions and open source Python libraries.
You’ll learn advanced techniques for transforming numerical variables, discretizing variables, and dealing with outliers. Each chapter offers step-by-step instructions and real-world examples, helping you understand when and how to apply various transformations for well-prepared data.
The book explores feature extraction from complex data types such as dates, times, and text. You’ll see how to create new features through mathematical operations and decision trees and use advanced tools like Featuretools and tsfresh to extract features from relational data and time series.
By the end, you’ll be ready to build reproducible feature engineering pipelines that can be easily deployed into production, optimizing data preprocessing workflows and enhancing machine learning model performance.What you will learn

Discover multiple methods to impute missing data effectively
Encode categorical variables while tackling high cardinality
Find out how to properly transform, discretize, and scale your variables
Automate feature extraction from date and time data
Combine variables strategically to create new and powerful features
Extract features from transactional data and time series
Learn methods to extract meaningful features from text data

Who this book is forIf you're a machine learning or data science enthusiast who wants to learn more about feature engineering, data preprocessing, and how to optimize these tasks, this book is for you. If you already know the basics of feature engineering and are looking to learn more advanced methods to craft powerful features, this book will help you. You should have basic knowledge of Python programming and machine learning to get started.

Soledad Galli is a bestselling data science instructor, author, and open-source Python developer. As the leading instructor at Train in Data, she teaches intermediate and advanced courses in machine learning that have enrolled over 64,000 students worldwide and continue to receive positive reviews. Sole is also the developer and maintainer of the Python open-source library Feature-engine, which provides an extensive array of methods for feature engineering and selection. With extensive experience as a data scientist in finance and insurance sectors, Sole has developed and deployed machine learning models for assessing insurance claims, evaluating credit risk, and preventing fraud. She is a frequent speaker at podcasts, meetups, and webinars, sharing her expertise with the broader data science community.

Table of Contents

Imputing Missing Data
Encoding Categorical Variables
Transforming Numerical Variables
Performing Variable Discretization
Working with Outliers
Extracting Features from Date and Time Variables
Performing Feature Scaling
Creating New Features
Extracting Features from Relational Data with Featuretools
Creating Features from a Time Series with tsfresh
Extracting Features from Text Variables

Erscheinungsdatum
Vorwort Christoph Molnar
Verlagsort Birmingham
Sprache englisch
Maße 191 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Software Entwicklung User Interfaces (HCI)
ISBN-10 1-83588-358-3 / 1835883583
ISBN-13 978-1-83588-358-7 / 9781835883587
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Kindersachbuch über die Welt von Morgen

von Christoph Drösser

Buch | Hardcover (2025)
Gabriel in der Thienemann-Esslinger Verlag GmbH
CHF 24,90
Wissensverarbeitung - Neuronale Netze

von Uwe Lämmel; Jürgen Cleve

Buch | Hardcover (2023)
Carl Hanser (Verlag)
CHF 48,95
was alle wissen sollten, die Websites und Apps entwickeln

von Jens Jacobsen; Lorena Meyer

Buch | Hardcover (2024)
Rheinwerk (Verlag)
CHF 55,85