Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Knowledge Science, Engineering and Management -

Knowledge Science, Engineering and Management

17th International Conference, KSEM 2024, Birmingham, UK, August 16–18, 2024, Proceedings, Part III
Buch | Softcover
424 Seiten
2024 | 2024 ed.
Springer Verlag, Singapore
978-981-97-5497-7 (ISBN)
CHF 109,95 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The papers are organized in the following topical sections:Volume I: Knowledge Science with Learning and AI (KSLA)

Volume II: Knowledge Engineering Research and Applications (KERA)

Volume III: Knowledge Management with Optimization and Security (KMOS)

Volume IV: Emerging Technology

Volume V: Special Tracks

The five-volume set LNCS 14884, 14885, 14886, 14887 & 14888 constitutes the refereed deadline proceedings of the 17th International Conference on Knowledge Science, Engineering and Management, KSEM 2024, held in Birmingham, UK, during August 16-18, 2024.

The 160 full papers presented in these proceedings were carefully reviewed and selected from 495 submissions. The papers are organized in the following topical sections:

Volume I: Knowledge Science with Learning and AI (KSLA)

Volume II: Knowledge Engineering Research and Applications (KERA)

Volume III: Knowledge Management with Optimization and Security (KMOS)

Volume IV: Emerging Technology

Volume V: Special Tracks

.- Knowledge Management with Optimization and Security (KMOS).

.- Knowledge Enhanced Zero-Shot Visual Relationship Detection.

.- WGGAL: A Practical Time Series Forecasting Framework for Dynamic Cloud Environments.

.- Dynamic Splitting of Diffusion Models for Multivariate Time Series Anomaly Detection in A JointCloud Environment.

.- VulCausal: Robust Vulnerability Detection Using Neural Network Models from a Causal Perspective.

.- LLM-Driven Ontology Learning to Augment Student Performance Analysis in Higher Education.

.- DA-NAS: Learning Transferable Architecture for Unsupervised Domain Adaptation.

.- Optimize rule mining based on constraint learning in knowledge graph.

.- GC-DAWMAR: A Global-Local Framework for Long-Term Time Series Forecasting.

.- An improved YOLOv7 based prohibited item detection model in X-ray images.

.- Invisible Backdoor Attacks on Key Regions Based on Target Neurons in Self-Supervised Learning.

.- Meta learning based Rumor Detection by Awareness of Social Bot.

.- Financial FAQ Question-Answering System Based on Question Semantic Similarity.

.- An illegal website family discovery method based on association graph clustering.

.- Different Attack and Defense Types for AI Cybersecurity.

.-An Improved Ultra-Scalable Spectral Clustering Assessment with Isolation Kernel.

.- A Belief Evolution Model with Non-Axiomatic Logic.

.- Lurking in the Shadows: Imperceptible Shadow Black-Box Attacks against Lane Detection Models.

.- Multi-mode Spatial-Temporal Data Modeling with Fully Connected Networks.

.- KEEN: Knowledge Graph-enabled Governance System for Biological Assets.

.- Cop: Continously Pairing of Heterogeneous Wearable Devices based on Heartbeat.

.- DFDS: Data-Free Dual Substitutes Hard-Label Black-Box Adversarial Attack.

.- Logits Poisoning Attack in Federated Distillation.

.- DiVerFed: Distribution-Aware Vertical Federated Learning for Missing Information.

.- Prompt Based CVAE Data Augmentation for Few-shot Intention Detection.

.- Reentrancy Vulnerability Detection Based On Improved Attention Mechanism.

.- Knowledge-Driven Backdoor Removal in Deep Neural Networks via Reinforcement Learning.

.- AI in Healthcare Data Privacy-preserving: Enhanced Trade-off between Security and Utility.

.- Traj-MergeGAN: A Trajectory Privacy Preservation Model Based on Generative Adversarial Network.

.- Adversarial examples for Preventing Diffusion Models from Malicious Image Edition.

.- ReVFed: Representation-based Privacy-preserving Vertical Federated Learning with Heterogeneous Models.

.- Logit Adjustment with Normalization and Augmentation in Few-shot Named Entity Recognition.

.- New Indicators and Optimizations for Zero-Shot NAS Based on Feature Maps.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo 93 Illustrations, color; 15 Illustrations, black and white
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen Hardware
Schlagworte Adaptation • artificial intelligentce • Blockchain • Conceptual Modelling • Construction • Dissemination • Embedding • Knowledge Discovery • Knowledge Engineering • knowledge graphs • knowledge management • knowledge metrics • Knowledge Representation • knowledge science • knowledge verification • machine learning • Ontologies • Reasoning • resource optimizatio • Smart Knowledge
ISBN-10 981-97-5497-6 / 9819754976
ISBN-13 978-981-97-5497-7 / 9789819754977
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75