Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Multivariate Analysis (eBook)

eBook Download: EPUB
2024 | 2. Auflage
1094 Seiten
John Wiley & Sons (Verlag)
978-1-118-89251-0 (ISBN)

Lese- und Medienproben

Multivariate Analysis - Kanti V. Mardia, John T. Kent, Charles C. Taylor
Systemvoraussetzungen
66,99 inkl. MwSt
(CHF 65,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Multivariate Analysis

Comprehensive Reference Work on Multivariate Analysis and its Applications

The first edition of this book, by Mardia, Kent and Bibby, has been used globally for over 40 years. This second edition brings many topics up to date, with a special emphasis on recent developments.

A wide range of material in multivariate analysis is covered, including the classical themes of multivariate normal theory, multivariate regression, inference, multidimensional scaling, factor analysis, cluster analysis and principal component analysis. The book also now covers modern developments such as graphical models, robust estimation, statistical learning, and high-dimensional methods. The book expertly blends theory and application, providing numerous worked examples and exercises at the end of each chapter. The reader is assumed to have a basic knowledge of mathematical statistics at an undergraduate level together with an elementary understanding of linear algebra. There are appendices which provide a background in matrix algebra, a summary of univariate statistics, a collection of statistical tables and a discussion of computational aspects. The work includes coverage of:

  • Basic properties of random vectors, copulas, normal distribution theory, and estimation
  • Hypothesis testing, multivariate regression, and analysis of variance
  • Principal component analysis, factor analysis, and canonical correlation analysis
  • Discriminant analysis, cluster analysis, and multidimensional scaling
  • New advances and techniques, including supervised and unsupervised statistical learning, graphical models and regularization methods for high-dimensional data

Although primarily designed as a textbook for final year undergraduates and postgraduate students in mathematics and statistics, the book will also be of interest to research workers and applied scientists.

Kanti V. Mardia OBE is a Senior Research Professor in the Department of Statistics at the University of Leeds, Leverhulme Emeritus Fellow, and Visiting Professor in the Department of Statistics, University of Oxford.

John T. Kent and Charles C. Taylor are both Professors in the Department of Statistics, University of Leeds.

Notation, Abbreviations, and Key Ideas


Matrices and Vectors


  • Vectors are viewed as column vectors and are represented using bold lower case letters. Round brackets are generally used when a vector is expressed in terms of its elements. For example, in which the th element or component is denoted . The transpose of is denoted , so is a row vector.
  • Matrices are written using bold upper case letters, e.g. and . The matrix may be written as in which is the element of the matrix in row and column . If has rows and columns, then the th row of , written as a column vector, is

    and the th column is written as

    Hence, can be expressed in various forms,

    We generally use square brackets when a matrix is expanded in terms of its elements.

    Operations on a matrix include

    1. transpose:
    2. determinant:
    3. inverse:
    4. generalized inverse:

    where for the final three operations, is assumed to be square, and for the inverse operation, is additionally assumed to be nonsingular. Different types of matrices are given in Tables A.1 and A.3. Table A.2 lists some further matrix operations.

Random Variables and Data


  • In general, a random vector and a nonrandom vector are both indicated using a bold lower case letter, e.g. . Thus, the distinction between the two must be determined from the context. This convention is in contrast to the standard convention in statistics where upper case letters are used to denote random quantities, and lower case letters their observed values.
  • The reason for our convention is that bold upper case letters are generally used for a data matrix , both random and fixed.
  • In spite of the above convention, we very occasionally (e.g. parts of Chapters 2 and 10) use bold upper case letters for a random vector when it is important to distinguish between the random vector and a possible value .
  • The phrase “high‐dimensional data” often implies , whereas the phrase “big data” often just indicates that or is large.

Parameters and Statistics


Elements of an data matrix are generally written , where indices are used to label the observations, and indices are used to label the variables.

If the rows of a data matrix are normally distributed with mean and covariance matrix , and , the following notation is used to distinguish various population and sample quantities:

Parameter Sample
Mean vector
Covariance matrix
Unbiased covariance matrix
Concentration matrix
Correlation matrix

Distributions


The following notation is used for univariate and multivariate distributions. Appendix B summarizes the univariate distributions used in the Book.

cumulative distribution function/distribution function (d.f.)
probability density function (p.d.f.)
expectation
c.f. characteristic function
d.f. distribution function
Hotelling
multivariate normal distribution in ‐dimensions with mean (column vector of length ) and covariance matrix
variance–covariance matrix
correlation matrix
Wishart distribution

The terms variance matrix, covariance matrix, and variance–covariance matrix are synonymous.

Matrix Decompositions


  • Any symmetric matrix can (by the spectral decomposition theorem) be written as where is a diagonal matrix of eigenvalues of (which are real‐valued), i.e. , and is an orthogonal matrix whose columns are standardized eigenvectors, i.e. and . See Theorem A.6.8.
  • Using the above, we define the symmetric square root of a positive definite matrix by
  • If is an matrix of rank , then by the singular value decomposition, it can be written as where and are column orthonormal matrices, and is a diagonal matrix with positive elements. See Theorem A.6.8.

Geometry


Table A.5 sets out the basic concepts in ‐dimensional geometry. In particular,

Length of a vector
Euclidean distance between and
Squared Mahalanobis distance – one of the most important distances in multivariate analysis, since it takes account of a covariance, i.e.

Table 14.6 gives a list of various distances.

Main Abbreviations and Commonly Used Notation


approximately equal to
(conditionally) independent of
is distributed as
the set of elements that are members of but not
Euclidean distance between and
transpose of matrix
determinant of matrix
inverse of matrix
‐inverse (generalized inverse)
column vector of 1s
column vector or matrix of 0s
between‐groups sum of squares and products (SSP) matrix
beta variable
normalizing constant for beta distribution (note nonitalic font to distinguish from the above)
BLUE best linear unbiased estimate
covariance between and
chi‐squared distribution with degrees of freedom
upper α critical value of chi‐squared distribution with degrees of freedom
c.f. characteristic function
partial derivative – multivariate examples in Appendix A.9
distance matrix
squared Mahalanobis distance
d.f. distribution function
Kronecker delta
diagonal elements of a square matrix (as column vector) or diagonal matrix created from a vector
 (see above)
expectation
distribution with degrees of freedom and
upper α critical value of distribution with degrees of freedom and
cumulative distribution function
probability density function
gamma function
GLS generalized least squares
centering matrix
identity matrix
ICA independent component analysis
i.i.d. independent and identically distributed
Jacobian of transformation (see Table 2.1)
concentration matrix ()
likelihood
log likelihood
LDA linear discriminant analysis
logarithm to the base (natural logarithm)
LRT likelihood ratio test
MANOVA multivariate analysis of variance
MDS multidimensional scaling
ML maximum likelihood
m.l.e. maximum likelihood estimate
mean (population) vector
multivariate normal distribution for...

Erscheint lt. Verlag 10.6.2024
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Applied Probability & Statistics • basic multivariate normal theory • cluster analysis • Data Analysis • Datenanalyse • directional data • discriminant analysis • Factor Analysis • Multidimensional Scaling • multiple regression • Multivariate Analyse • multivariate analysis • Principal Component Analysis • Statistics • Statistik • structural equations models
ISBN-10 1-118-89251-8 / 1118892518
ISBN-13 978-1-118-89251-0 / 9781118892510
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich