Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Mathematical Introduction to Data Science

(Autor)

Buch | Softcover
IX, 299 Seiten
2024
Springer Berlin (Verlag)
978-3-662-69425-1 (ISBN)

Lese- und Medienproben

Mathematical Introduction to Data Science - Sven A. Wegner
CHF 127,30 inkl. MwSt

This textbook is intended for students of mathematics who have completed the foundational courses of their undergraduate studies and now want to specialize in Data Science and Machine Learning. It introduces the reader to the most important topics in the latter areas focusing on rigorous proofs and a systematic understanding of the underlying ideas.

The textbook comes with 121 classroom-tested exercises. Topics covered include k-nearest neighbors, linear and logistic regression, clustering, best-fit subspaces, principal component analysis, dimensionality reduction, collaborative filtering, perceptron, support vector machines, the kernel method, gradient descent and neural networks.

Sven A. Wegner earned his PhD in Functional Analysis in 2010. After several international academic positions, he is currently affiliated with the University of Hamburg (Germany).

Preface.- 1 What is Data (Science)?.- 2 Affine Linear, Polynomial and Logistic Regression.- 3 k-nearest Neighbors.- 4 Clustering.- 5 Graph Clustering.- 6 Best-Fit Subspaces.- 7 Singular Value Decomposition.- 8 Curse and Blessing of High Dimensionality.- 9 Concentration of Measure.- 10 Gaussian Random Vectors in High Dimensions.- 11 Dimensionality Reduction à la Johnson-Lindenstrauss.- 12 Separation and Fitting of HIgh-Dimensional Gaussians.- 13 Perceptron.- 14 Support Vector Machines.- 15  Kernel Method.- 16 Neural Networks.- 17 Gradient Descent for Convex Functions.- Appendix: Selected Results of Probability Theory.- Bibliography.- Index.

Erscheinungsdatum
Zusatzinfo IX, 299 p. 119 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Schlagworte applied functional analysis • Data Science • Deep learning • Kernel Methods • machine learning • Measure Concentration • Neural networks • Neuronale Netze • Perceptron • Support Vector Machines • SVM • Vector Support Machines
ISBN-10 3-662-69425-5 / 3662694255
ISBN-13 978-3-662-69425-1 / 9783662694251
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Leitfaden für die Praxis

von Christiana Klingenberg; Kristin Weber

Buch (2025)
Hanser (Verlag)
CHF 69,95