Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Deep Reinforcement Learning Hands-On - Maxim Lapan

Deep Reinforcement Learning Hands-On

A practical and easy-to-follow guide to RL from Q-learning and DQNs to PPO and RLHF

(Autor)

Buch | Softcover
716 Seiten
2024 | 3rd Revised edition
Packt Publishing Limited (Verlag)
978-1-83588-270-2 (ISBN)
CHF 76,75 inkl. MwSt
Maxim Lapan delivers intuitive explanations and insights into complex reinforcement learning (RL) concepts, starting from the basics of RL on simple environments and tasks to modern, state-of-the-art methods
Purchase of the print or Kindle book includes a free PDF eBook

Key Features

Learn with concise explanations, modern libraries, and diverse applications from games to stock trading and web navigation
Develop deep RL models, improve their stability, and efficiently solve complex environments
New content on RL from human feedback (RLHF), MuZero, and transformers

Book DescriptionStart your journey into reinforcement learning (RL) and reward yourself with the third edition of Deep Reinforcement Learning Hands-On. This book takes you through the basics of RL to more advanced concepts with the help of various applications, including game playing, discrete optimization, stock trading, and web browser navigation. By walking you through landmark research papers in the fi eld, this deep RL book will equip you with practical knowledge of RL and the theoretical foundation to understand and implement most modern RL papers.
The book retains its approach of providing concise and easy-to-follow explanations from the previous editions. You'll work through practical and diverse examples, from grid environments and games to stock trading and RL agents in web environments, to give you a well-rounded understanding of RL, its capabilities, and its use cases. You'll learn about key topics, such as deep Q-networks (DQNs), policy gradient methods, continuous control problems, and highly scalable, non-gradient methods.
If you want to learn about RL through a practical approach using OpenAI Gym and PyTorch, concise explanations, and the incremental development of topics, then Deep Reinforcement Learning Hands-On, Third Edition, is your ideal companionWhat you will learn

Stay on the cutting edge with new content on MuZero, RL with human feedback, and LLMs
Evaluate RL methods, including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, and D4PG
Implement RL algorithms using PyTorch and modern RL libraries
Build and train deep Q-networks to solve complex tasks in Atari environments
Speed up RL models using algorithmic and engineering approaches
Leverage advanced techniques like proximal policy optimization (PPO) for more stable training

Who this book is forThis book is ideal for machine learning engineers, software engineers, and data scientists looking to learn and apply deep reinforcement learning in practice. It assumes familiarity with Python, calculus, and machine learning concepts. With practical examples and high-level overviews, it’s also suitable for experienced professionals looking to deepen their understanding of advanced deep RL methods and apply them across industries, such as gaming and finance

Maxim has been working as a software developer for more than 20 years and was involved in various areas: distributed scientific computing, distributed systems and big data processing. Since 2014 he is actively using machine and deep learning to solve practical industrial tasks, such as NLP problems, RL for web crawling and web pages analysis. He has been living in Germany with his family.

Table of Contents

What Is Reinforcement Learning?
OpenAI Gym API and Gymnasium
Deep Learning with PyTorch
The Cross-Entropy Method
Tabular Learning and the Bellman Equation
Deep Q-Networks
Higher-Level RL Libraries
DQN Extensions
Ways to Speed Up RL
Stocks Trading Using RL
Policy Gradients
Actor-Critic Methods - A2C and A3C
The TextWorld Environment
Web Navigation
Continuous Action Space
Trust Region Methods
Black-Box Optimizations in RL
Advanced Exploration
Reinforcement Learning with Human Feedback
AlphaGo Zero and MuZero
RL in Discrete Optimization
Multi-Agent RL

Erscheinungsdatum
Verlagsort Birmingham
Sprache englisch
Maße 191 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-83588-270-6 / 1835882706
ISBN-13 978-1-83588-270-2 / 9781835882702
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95