Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Perturbation Methods and Semilinear Elliptic Problems on R^n

Buch | Hardcover
XII, 184 Seiten
2005
Springer Basel (Verlag)
978-3-7643-7321-4 (ISBN)

Lese- und Medienproben

Perturbation Methods and Semilinear Elliptic Problems on R^n - Antonio Ambrosetti, Andrea Malchiodi
CHF 149,75 inkl. MwSt
Several important problems arising in Physics, Di?erential Geometry and other n topics lead to consider semilinear variational elliptic equations on R and a great deal of work has been devoted to their study. From the mathematical point of view, the main interest relies on the fact that the tools of Nonlinear Functional Analysis, based on compactness arguments, in general cannot be used, at least in a straightforward way, and some new techniques have to be developed. n On the other hand, there are several elliptic problems on R which are p- turbative in nature. In some cases there is a natural perturbation parameter, like inthe bifurcationfromthe essentialspectrum orinsingularlyperturbed equations or in the study of semiclassical standing waves for NLS. In some other circ- stances, one studies perturbations either because this is the ?rst step to obtain global results or else because it often provides a correct perspective for further global studies. For these perturbation problems a speci?c approach,that takes advantage of such a perturbative setting, seems the most appropriate. These abstract tools are provided by perturbation methods in critical point theory. Actually, it turns out that such a framework can be used to handle a large variety of equations, usually considered di?erent in nature. Theaimofthismonographistodiscusstheseabstractmethodstogetherwith their applications to several perturbation problems, whose common feature is to n involve semilinear Elliptic Partial Di?erential Equations on R with a variational structure.

Examples and Motivations.- Pertubation in Critical Point Theory.- Bifurcation from the Essential Spectrum.- Elliptic Problems on ?n with Subcritical Growth.- Elliptic Problems with Critical Exponent.- The Yamabe Problem.- Other Problems in Conformal Geometry.- Nonlinear Schrödinger Equations.- Singularly Perturbed Neumann Problems.- Concentration at Spheres for Radial Problems.

Erscheint lt. Verlag 18.11.2005
Reihe/Serie Progress in Mathematics
Zusatzinfo XII, 184 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 515 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Compactness • differential equation • Elliptische Systeme • Equation • Geometry • partial differential equation • Partial differential equations • Perturbation • Semilinear elliptic problems • Störung (Math.)
ISBN-10 3-7643-7321-0 / 3764373210
ISBN-13 978-3-7643-7321-4 / 9783764373214
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95