Positive Energy Representations of Gauge Groups I
Localization
Seiten
This is the first in a series of papers on projective positive energy representations of gauge groups. Let Ξ → M be a principal fiber bundle, and let Γc(M, Ad(Ξ)) be the group of compactly supported (local) gauge transformations. If P is a group of “space–time symmetries” acting on Ξ → M, then a projective unitary representation of Γc(M, Ad(Ξ)) ⋊ P is of positive energy if every “timelike generator” p0 ∈ 𝔭 gives rise to a Hamiltonian H(p0) whose spectrum is bounded from below. Our main result shows that in the absence of fixed points for the cone of timelike generators, the projective positive energy representations
of the connected component Γc(M, Ad(Ξ))0 come from 1-dimensional P-orbits. For compact M this yields a complete classification of the projective positive energy representations in terms of lowest weight representations of affine Kac–Moody algebras. For noncompact M, it yields a classification under further restrictions on the space of ground states.
In the second part of this series we consider larger groups of gauge transformations, which contain also global transformations. The present results are used to localize the positive energy representations at (conformal) infinity.
of the connected component Γc(M, Ad(Ξ))0 come from 1-dimensional P-orbits. For compact M this yields a complete classification of the projective positive energy representations in terms of lowest weight representations of affine Kac–Moody algebras. For noncompact M, it yields a classification under further restrictions on the space of ground states.
In the second part of this series we consider larger groups of gauge transformations, which contain also global transformations. The present results are used to localize the positive energy representations at (conformal) infinity.
Delft University of Technology, The Netherlands
Friedrich-Alexander University Erlangen-Nürnberg, Germany
| Erscheinungsdatum | 20.02.2024 |
|---|---|
| Reihe/Serie | MEMOIRS OF THE EUROPEAN MATHEMATICAL SOCIETY ; 9 |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 170 x 240 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Schlagworte | gauge group • infinite-dimensional Lie group • Loop group • positive energy representation • Projective representation • Unitary Representation |
| ISBN-10 | 3-98547-067-7 / 3985470677 |
| ISBN-13 | 978-3-98547-067-9 / 9783985470679 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Grundlagen für das Bachelor-Studium
Buch | Hardcover (2023)
Hanser (Verlag)
CHF 55,95
Analysis und Lineare Algebra mit Querverbindungen
Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 97,95