Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Random Fields and Stochastic Partial Differential Equations - Y. Rozanov

Random Fields and Stochastic Partial Differential Equations

(Autor)

Buch | Hardcover
232 Seiten
1998 | 1998 ed.
Kluwer Academic Publishers (Verlag)
978-0-7923-4984-6 (ISBN)
CHF 149,75 inkl. MwSt
) It assumes certain knowledge in general Analysis and Probability {Hilbert space methods, Schwartz distributions, Fourier transform) . , generalized random function"' = ( cp, 'TJ), cp E C~(T), with independent random variables ( cp, 'fJ) for any test functions cp with disjoint supports.
This book considers some models described by means of partial dif­ ferential equations and boundary conditions with chaotic stochastic disturbance. In a framework of stochastic Partial Differential Equa­ tions an approach is suggested to generalize solutions of stochastic Boundary Problems. The main topic concerns probabilistic aspects with applications to well-known Random Fields models which are representative for the corresponding stochastic Sobolev spaces. {The term "stochastic" in general indicates involvement of appropriate random elements. ) It assumes certain knowledge in general Analysis and Probability {Hilbert space methods, Schwartz distributions, Fourier transform) . I A very general description of the main problems considered can be given as follows. Suppose, we are considering a random field ~ in a region T ~ Rd which is associated with a chaotic (stochastic) source"' by means of the differential equation (*) in T. A typical chaotic source can be represented by an appropri­ ate random field"' with independent values, i. e. , generalized random function"' = ( cp, 'TJ), cp E C~(T), with independent random variables ( cp, 'fJ) for any test functions cp with disjoint supports. The property of having independent values implies a certain "roughness" of the ran­ dom field "' which can only be treated functionally as a very irregular Schwarz distribution. With the lack of a proper development of non­ linear analyses for generalized functions, let us limit ourselves to the 1 For related material see, for example, J. L. Lions, E.

I. Random Fields and Stochastic Sobolev Spaces.- II. Equations for Generalized Random Functions.- III. Random Fields Associated with Partial Equations.- IV. Gaussian Random Fields.

Erscheint lt. Verlag 31.3.1998
Reihe/Serie Mathematics and Its Applications ; 438
Mathematics and Its Applications ; 438
Zusatzinfo VII, 232 p.
Sprache englisch
Maße 156 x 234 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 0-7923-4984-9 / 0792349849
ISBN-13 978-0-7923-4984-6 / 9780792349846
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich