Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Fourier Analysis in Convex Geometry - Alexander Koldobsky

Fourier Analysis in Convex Geometry

Buch | Hardcover
170 Seiten
2005 | illustrated Edition
American Mathematical Society (Verlag)
978-0-8218-3787-0 (ISBN)
CHF 108,20 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Discusses Fourier analysis approach. This book expresses certain geometric properties of bodies in terms of Fourier analysis and uses harmonic analysis methods to solve geometric problems. It is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability.
The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems.One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the $(n-1)$-dimensional volume of hyperplane sections of the $n$-dimensional unit cube (it is $/sqrt{2}$ for each $n/geq 2$). Another is the Busemann-Petty problem: if $K$ and $L$ are two convex origin-symmetric $n$-dimensional bodies and the $(n-1)$-dimensional volume of each central hyperplane section of $K$ is less than the $(n-1)$-dimensional volume of the corresponding section of $L$, is it true that the $n$-dimensional volume of $K$ is less than the volume of $L$? (The answer is positive for $n/le 4$ and negative for $n>4$.) The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.

Introduction Basic concepts Volume and the Fourier transform Intersection bodies The Busemann-Petty problem Intersection bodies and $L_p$-spaces Extremal sections of $/ell_q$-balls Projections and the Fourier transform Bibliography Index.

Erscheint lt. Verlag 1.6.2005
Reihe/Serie Mathematical Surveys and Monographs
Zusatzinfo Illustrations
Verlagsort Providence
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8218-3787-7 / 0821837877
ISBN-13 978-0-8218-3787-0 / 9780821837870
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95