Additive Number Theory: Inverse Problems and the Geometry of Sumsets
Seiten
1996
|
1996 ed.
Springer-Verlag New York Inc.
978-0-387-94655-9 (ISBN)
Springer-Verlag New York Inc.
978-0-387-94655-9 (ISBN)
Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.
| Reihe/Serie | Graduate Texts in Mathematics ; 165 |
|---|---|
| Zusatzinfo | XIV, 295 p. |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 156 x 234 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| ISBN-10 | 0-387-94655-1 / 0387946551 |
| ISBN-13 | 978-0-387-94655-9 / 9780387946559 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Mengeneigenschaften im Muster der Universellen Gleichmäßigkeit im …
Buch | Spiralbindung (2025)
White, J (Verlag)
CHF 208,55
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90
Buch | Softcover (2025)
Princeton University Press (Verlag)
CHF 108,20