Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems - Ruqiang Yan, Zhibin Zhao

Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems

Buch | Hardcover
206 Seiten
2024
CRC Press (Verlag)
9781032752372 (ISBN)
CHF 143,10 inkl. MwSt
The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.
The book aims to highlight the potential of deep learning (DL)-enabled methods in intelligent fault diagnosis (IFD), along with their benefits and contributions.

The authors first introduce basic applications of DL-enabled IFD, including auto-encoders, deep belief networks, and convolutional neural networks. Advanced topics of DL-enabled IFD are also explored, such as data augmentation, multi-sensor fusion, unsupervised deep transfer learning, neural architecture search, self-supervised learning, and reinforcement learning. Aiming to revolutionize the nature of IFD, Deep Neural Networks-Enabled Intelligent Fault Diangosis of Mechanical Systems contributes to improved efficiency, safety, and reliability of mechanical systems in various industrial domains.

The book will appeal to academic researchers, practitioners, and students in the fields of intelligent fault diagnosis, prognostics and health management, and deep learning.

Ruqiang Yan is a professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include data analytics, AI, and energy-efficient sensing and sensor networks for the condition monitoring and health diagnosis of large-scale, complex, dynamical systems. Zhibin Zhao is an assistant professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include sparse signal processing and machine learning, especially deep learning for machine fault detection, diagnosis, and prognosis.

1:Introduction and Background Part I: Basic applications of deep learning enabled Intelligent Fault Diagnosis 2:Auto-encoders for Intelligent Fault Diagnosis 3:Deep Belief Networks for Intelligent Fault Diagnosis 4:Convolutional Neural Networks for Intelligent Fault Diagnosis Part II: advanced topics of deep learning enabled Intelligent Fault Diagnosis 5:Data Augmentation for Intelligent Fault Diagnosis 6:Multi-sensor Fusion for Intelligent Fault Diagnosis 7: Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis 8: Neural Architecture Search for Intelligent Fault Diagnosis 9: Self-Supervised Learning (SSF) for Intelligent Fault Diagnosis 10: Reinforcement Learning for Intelligent Fault Diagnosis

Erscheinungsdatum
Zusatzinfo 36 Tables, black and white; 87 Line drawings, black and white; 14 Halftones, black and white; 101 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 178 x 254 mm
Gewicht 760 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
ISBN-13 9781032752372 / 9781032752372
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20