Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistical Inference Under Mixture Models - Jiahua Chen

Statistical Inference Under Mixture Models (eBook)

(Autor)

eBook Download: PDF
2023
327 Seiten
Springer Nature Singapore (Verlag)
978-981-99-6141-2 (ISBN)
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book puts its weight on theoretical issues related to finite mixture models. It shows that a good applicant, is an applicant who understands the issues behind each statistical method. This book is intended for applicants whose interests include some understanding of the procedures they are using, while they do not have to read the technical derivations.

At the same time, many researchers find most theories and techniques necessary for the development of various statistical methods, without chasing after one set of research papers, after another. Even though the book emphasizes the theory, it provides accessible numerical tools for data analysis. Readers with strength in developing statistical software, may find it useful.




Jiahua Chen is a professor at the University of British Columbia. He has broad research interests and published papers in a wide range of research areas and journals. Among numerous awards, he is the recipient of the CRM/SSC award for significant contributions within the first 15 years of obtaining a Ph.D. degree in 2005 and the Gold medal of the Statistical Society of Canada in 2014. He is an elected fellow of both the Institute of Mathematical Statistics and the American Statistical Association. He won the International Chinese Statistical Association distinguished achievement award in 2016. He claims a unique territory in the area of developing inference methods for finite mixture models.

Furthermore, Jiahua Chen served as the Canada Research Chair, Tier I from January 2007 to December 2020, and he is a fellow of the Royal Society of Canada.



This book puts its weight on theoretical issues related to finite mixture models. It shows that a good applicant, is an applicant who understands the issues behind each statistical method. This book is intended for applicants whose interests include some understanding of the procedures they are using, while they do not have to read the technical derivations.At the same time, many researchers find most theories and techniques necessary for the development of various statistical methods, without chasing after one set of research papers, after another. Even though the book emphasizes the theory, it provides accessible numerical tools for data analysis. Readers with strength in developing statistical software, may find it useful.
Erscheint lt. Verlag 22.11.2023
Reihe/Serie ICSA Book Series in Statistics
ICSA Book Series in Statistics
Zusatzinfo XIV, 327 p. 9 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte EM-Algorithm • EM-test • Homogeneity • Hypothesis test • likelihood ratio test • maximum likelihood estimation • Mixture model • Modified likelihood • Nonparametric MLE • Optimal rate of convergence • Penalized MLE
ISBN-10 981-99-6141-6 / 9819961416
ISBN-13 978-981-99-6141-2 / 9789819961412
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich