Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Deep Learning - Dulani Meedeniya

Deep Learning

A Beginners' Guide
Buch | Softcover
184 Seiten
2025
Chapman & Hall/CRC (Verlag)
978-1-032-48796-0 (ISBN)
CHF 87,25 inkl. MwSt
This book focuses on Deep Learning (DL), which is an important aspect of data science, that includes predictive modelling.
This book focuses on deep learning (DL), which is an important aspect of data science, that includes predictive modeling. DL applications are widely used in domains such as finance, transport, healthcare, automanufacturing, and advertising. The design of the DL models based on artificial neural networks is influenced by the structure and operation of the brain. This book presents a comprehensive resource for those who seek a solid grasp of the techniques in DL.

Key features:



Provides knowledge on theory and design of state-of-the-art deep learning models for real-world applications
Explains the concepts and terminology in problem-solving with deep learning
Explores the theoretical basis for major algorithms and approaches in deep learning
Discusses the enhancement techniques of deep learning models
Identifies the performance evaluation techniques for deep learning models

Accordingly, the book covers the entire process flow of deep learning by providing awareness of each of the widely used models. This book can be used as a beginners’ guide where the user can understand the associated concepts and techniques. This book will be a useful resource for undergraduate and postgraduate students, engineers, and researchers, who are starting to learn the subject of deep learning.

Dulani Meedeniya is a Professor in Computer Science and Engineering at the University of Moratuwa, Sri Lanka. She holds a PhD in Computer Science from the University of St Andrews, United Kingdom. She is the director of the Bio-Health Informatics group at her department and engages in a number of collaborative research projects. She is a co-author of 100+ publications in indexed journals, peer-reviewed conferences, and book chapters. Prof. Dulani has received several awards and grants for her contribution to research. She serves as a reviewer, program committee, and editorial team member in many international conferences and journals. Her main research interests are deep learning, software modeling and design, bio-health informatics, and technology-enhanced learning. She is a Fellow of HEA (UK), MIET, Senior Member of IEEE, Member of ACM, and a Chartered Engineer registered at EC (UK).

1. Introduction. 2. Concepts and Terminology. 3. State-of-the-Art Deep Learning Models: Part I. 4. State-of-the-Art Deep Learning Models: Part II. 5. Advanced Learning Techniques. 6. Enhancement of Deep Learning Architectures. 7. Performance Evaluation Techniques.

Erscheinungsdatum
Zusatzinfo 9 Tables, black and white; 87 Line drawings, black and white; 22 Halftones, black and white; 109 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 370 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Software Entwicklung Spieleprogrammierung
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-032-48796-8 / 1032487968
ISBN-13 978-1-032-48796-0 / 9781032487960
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95