Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras
Springer Berlin (Verlag)
978-3-540-24020-4 (ISBN)
The Fourier transforms of invariant functions on finite reductive Lie algebras are due to T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lusztig's character sheaves theory. He conjectures a commutation formula between Deligne-Lusztig induction and Fourier transforms that he proves in many cases. As an application the computation of the values of the trigonometric sums (on reductive Lie algebras) is shown to reduce to the computation of the generalized Green functions and to the computation of some fourth roots of unity.
Preface.- Introduction.- Connected Reductive Groups and their Lie Algebras.- Deligne-Lusztig Induction.- Local Systems and Perverse Shaeves.- Geometrical Induction.- Deligne-Lusztig Induction and Fourier Transforms.- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits.- References.- Index.
| Erscheint lt. Verlag | 2.12.2004 |
|---|---|
| Reihe/Serie | Lecture Notes in Mathematics |
| Zusatzinfo | XI, 165 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 285 g |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Schlagworte | 20C33 • character-sheaves • Deligne-Lusztig induction • Fourier-Transformation • Fourier Transforms • Invariante • Lie algebra • Lie Algebras • Liesche Algebren/Gruppen • trigonometric sums |
| ISBN-10 | 3-540-24020-9 / 3540240209 |
| ISBN-13 | 978-3-540-24020-4 / 9783540240204 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich