Machine Learning-Methoden zur Vorhersage von Kundenabwanderungen im Bankensektor (eBook)
Die stetige Weiterentwicklung von Machine Learning als Teilgebiet der künstlichen Intelligenz bietet heute die Möglichkeit, ein effektives, datengetriebenes Customer Relationship Management zu implementieren. Die Aufstellung eines Prognosemodells, welches abwanderungsgefährdete Kunden frühzeitig identifizieren kann, ist in diesem Zusammenhang ein vielversprechendes Werkzeug zur Verbesserung des Customer Churn Managements.
Im Rahmen dieser Arbeit wird gezeigt, wie moderne Machine Learning-Methoden erfolgreich eingesetzt werden können, um zuverlässige Vorhersagemodelle von Kundenabwanderungen zu modellieren und evaluieren. In einem Praxisteil werden hierbei fiktive Kundendaten einer Bank mit der Open Source-Programmiersprache Python analysiert.
| Erscheint lt. Verlag | 15.5.2023 |
|---|---|
| Verlagsort | München |
| Sprache | deutsch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Schlagworte | Customer churn • Data Mining • Data Science • machine learning |
| ISBN-10 | 3-346-87197-5 / 3346871975 |
| ISBN-13 | 978-3-346-87197-8 / 9783346871978 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich