Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Machine Learning-Methoden zur Vorhersage von Kundenabwanderungen im Bankensektor (eBook)

eBook Download: PDF
2023 | 1. Auflage
GRIN Verlag
978-3-346-87197-8 (ISBN)

Lese- und Medienproben

Machine Learning-Methoden zur Vorhersage von Kundenabwanderungen im Bankensektor
Systemvoraussetzungen
39,99 inkl. MwSt
(CHF 38,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Masterarbeit aus dem Jahr 2020 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1,0, Universität Ulm, Sprache: Deutsch, Abstract: Mit zunehmendem Wettbewerb wird die Kundenbindung zu einer der größten Herausforderungen für Kundendienstleister und insbesondere dem Bankensektor.

Die stetige Weiterentwicklung von Machine Learning als Teilgebiet der künstlichen Intelligenz bietet heute die Möglichkeit, ein effektives, datengetriebenes Customer Relationship Management zu implementieren. Die Aufstellung eines Prognosemodells, welches abwanderungsgefährdete Kunden frühzeitig identifizieren kann, ist in diesem Zusammenhang ein vielversprechendes Werkzeug zur Verbesserung des Customer Churn Managements.

Im Rahmen dieser Arbeit wird gezeigt, wie moderne Machine Learning-Methoden erfolgreich eingesetzt werden können, um zuverlässige Vorhersagemodelle von Kundenabwanderungen zu modellieren und evaluieren. In einem Praxisteil werden hierbei fiktive Kundendaten einer Bank mit der Open Source-Programmiersprache Python analysiert.
Erscheint lt. Verlag 15.5.2023
Verlagsort München
Sprache deutsch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Customer churn • Data Mining • Data Science • machine learning
ISBN-10 3-346-87197-5 / 3346871975
ISBN-13 978-3-346-87197-8 / 9783346871978
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55