Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Überblick über das Bayes'sche Netzwerk

(Autor)

Buch | Softcover
128 Seiten
2022
Verlag Unser Wissen
978-620-4-63152-3 (ISBN)
CHF 85,25 inkl. MwSt
  • Titel nicht im Sortiment
  • Artikel merken
Das Bayes'sche Netzwerk ist eine Kombination aus probabilistischem Modell und Graphenmodell. Es findet breite Anwendung in den Bereichen maschinelles Lernen, Data Mining, Diagnose usw., da es eine solide evidenzbasierte Inferenz bietet, die der menschlichen Intuition vertraut ist. Allerdings kann ein Bayes'sches Netz Verwirrung stiften, da es viele komplizierte Konzepte, Formeln und Diagramme enthält. Diese Konzepte sollten so klar organisiert und dargestellt werden, dass sie leicht zu verstehen sind. Dies ist das Ziel des vorliegenden Berichts. Der Bericht umfasst 5 Hauptabschnitte, die die Grundsätze des Bayes'schen Netzes behandeln. Abschnitt 1 ist eine Einführung in das Bayes'sche Netzwerk mit einigen grundlegenden Konzepten. Fortgeschrittene Konzepte werden in Abschnitt 2 behandelt. Der Inferenzmechanismus des Bayes'schen Netzes wird in Abschnitt 3 beschrieben. Das Parameterlernen, das uns erklärt, wie man die Parameter des Bayes'schen Netzes aktualisiert, wird in Abschnitt 4 beschrieben. Abschnitt 5 befasst sich mit dem Strukturlernen, in dem beschrieben wird, wie ein Bayes'sches Netz aufgebaut wird. Im Allgemeinen sind die drei Hauptthemen des Bayes'schen Netzes die Inferenz, das Parameterlernen und das Strukturlernen, die in den aufeinander folgenden Abschnitten 3, 4 und 5 behandelt werden. Abschnitt 6 ist die Schlussfolgerung.

Loc Nguyen ist seit 2017 ein unabhängiger Wissenschaftler. Er ist Postdoktorand in Informatik, zertifiziert von INSTICC im Jahr 2015. Seit 2016 ist er von der LMS als Mathematiker anerkannt. 2016 wurde ihm von HOSREM der Doktortitel in statistischer Medizin verliehen. Er hat 78 Arbeiten und Vorabdrucke sowie 8 wissenschaftliche und technologische Produkte veröffentlicht.

Erscheinungsdatum
Sprache deutsch
Maße 150 x 220 mm
Gewicht 209 g
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Bayes'sches Netzwerk • Bayes'sches Parameterlernen • Bayes'sches Strukturlernen • Constraint-basierter Ansatz • d-separation • gerichteter azyklischer Graph (DAG) • Score-basierter Ansatz
ISBN-10 620-4-63152-7 / 6204631527
ISBN-13 978-620-4-63152-3 / 9786204631523
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Stochastik: von Abweichungen bis Zufall

von René L. Schilling

Buch | Softcover (2025)
De Gruyter (Verlag)
CHF 48,90

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 39,20