Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning with Python - Parteek Bhatia

Machine Learning with Python

Principles and Practical Techniques

(Autor)

Buch | Softcover
850 Seiten
2025
Cambridge University Press (Verlag)
978-1-009-17024-6 (ISBN)
CHF 69,80 inkl. MwSt
  • Noch nicht erschienen (ca. Dezember 2025)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This textbook presents the theoretical foundations of machine learning along with its practical implementation in Python, to help a beginner learn and implement all aspects of the subject. It will be a vital resource for both students and professionals looking for a primer in data science and machine learning.
Machine learning has become a dominant problem-solving technique in the modern world, with applications ranging from search engines and social media to self-driving cars and artificial intelligence. This lucid textbook presents the theoretical foundations of machine learning algorithms, and then illustrates each concept with its detailed implementation in Python to allow beginners to effectively implement the principles in real-world applications. All major techniques, such as regression, classification, clustering, deep learning, and association mining, have been illustrated using step-by-step coding instructions to help inculcate a 'learning by doing' approach. The book has no prerequisites, and covers the subject from the ground up, including a detailed introductory chapter on the Python language. As such, it is going to be a valuable resource not only for students of computer science, but also for anyone looking for a foundation in the subject, as well as professionals looking for a ready reckoner.

Acknowledgements; Preface; Chapter 1. Beginning with Machine Learning; Chapter 2. Introduction to Python; Chapter 3. Data Pre-processing; Chapter 4. Implementing Data Pre-processing in Python; Chapter 5. Simple Linear Regression; Chapter 6. Implementing Simple Linear Regression; Chapter 7. Multiple Linear Regression and Polynomial Linear Regression; Chapter 8. Implementing Multiple Linear Regression and Polynomial Linear Regression; Chapter 9. Classification; Chapter 10. Support Vector Machine Classifier; Chapter 11. Implementing Classification; Chapter 12. Clustering; Chapter 13. Implementing Clustering; Chapter 14. Association Mining; Chapter 15. Implementing Association Mining; Chapter 16. Artificial Neural Network; Chapter 17. Implementing the Artificial Neural Network; Chapter 18. Deep Learning and Convolutional Neural Network; Chapter 19. Implementing Convolutional Neural Network; Chapter 20. Recurrent Neural Network; Chapter 21. Implementing Recurrent Neural Network; Chapter 22. Genetic Algorithm for Machine Learning; Index.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 150 x 150 mm
Gewicht 1351 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-009-17024-4 / 1009170244
ISBN-13 978-1-009-17024-6 / 9781009170246
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75