Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Information Theory for Data Science - Changho Suh

Information Theory for Data Science

(Autor)

Buch | Hardcover
428 Seiten
2023
now publishers Inc (Verlag)
9781638281146 (ISBN)
CHF 189,95 inkl. MwSt
  • Lieferzeit auf Anfrage
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The ebook edition of this title is Open Access and freely available to read online.


This book aims at demonstrating modern roles of information theory in a widening array of data science applications, and it is written as a text for senior undergraduate students in Information Theory
The ebook edition of this title is Open Access and freely available to read online.


Information theory deals with mathematical laws that govern the flow, representation and transmission of information. The most significant achievement of the field is the invention of digital communication which forms the basis of our daily-life digital products such as smart phones, laptops and any IoT devices. Recently it has also found important roles in a spotlight field that has been revolutionized during the past decades: data science.


This book aims at demonstrating modern roles of information theory in a widening array of data science applications. The first and second parts of the book covers the core concepts of information theory: basic concepts on several key notions; and celebrated source and channel coding theorems which concern the fundamental limits of communication. The last part focuses on applications that arise in data science, including social networks, ranking, and machine learning.


The book is written as a text for senior undergraduate and graduate students working on Information Theory and Communications, and it should also prove to be a valuable reference for professionals and engineers from these fields.

Dr. Changho Suh is an Associate Professor of Electrical Engineering at KAIST. He received the B.S. and M.S. degrees in Electrical Engineering from KAIST in 2000 and 2002 respectively, and the Ph.D. degree in Electrical Engineering and Computer Sciences from UC Berkeley in 2011.

Introduction

Chapter 1. Source Coding

Chapter 2. Channel Coding

Chapter 3. Data Science Applications

Appendices

Erscheinungsdatum
Sprache englisch
Maße 156 x 234 mm
Gewicht 774 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
ISBN-13 9781638281146 / 9781638281146
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95