Machine Learning Methods for Engineering Application Development (eBook)
240 Seiten
Bentham Science Publishers (Verlag)
9789815079180 (ISBN)
This book is a quick review of machine learning methods for engineeringapplications. It provides an introduction to the principles of machine learningand common algorithms in the first section. Proceeding chapters summarize andanalyze the existing scholarly work and discuss some general issues in this field.Next, it offers some guidelines on applying machine learning methods to softwareengineering tasks. Finally, it gives an outlook into some of the futuredevelopments and possibly new research areas of machine learning and artificialintelligence in general.Techniques highlighted in the book include: Bayesian models, supportvector machines, decision tree induction, regression analysis, and recurrent andconvolutional neural network. Finally, it also intends to be a reference book. Key Features:Describes real-world problems that can be solved using machine learningExplains methods for directly applying machine learning techniques to concrete real-world problemsExplains concepts used in Industry 4.0 platforms, including the use and integration of AI, ML, Big Data, NLP, and the Internet of Things (IoT). It does not require prior knowledge of the machine learning This book is meantto be an introduction to artificial intelligence (AI), machine earning, and itsapplications in Industry 4.0. It explains the basic mathematical principlesbut is intended to be understandable for readers who do not have a backgroundin advanced mathematics.
This book is a quick review of machine learning methods for engineeringapplications. It provides an introduction to the principles of machine learningand common algorithms in the first section. Proceeding chapters summarize andanalyze the existing scholarly work and discuss some general issues in this field.Next, it offers some guidelines on applying machine learning methods to softwareengineering tasks. Finally, it gives an outlook into some of the futuredevelopments and possibly new research areas of machine learning and artificialintelligence in general.Techniques highlighted in the book include: Bayesian models, supportvector machines, decision tree induction, regression analysis, and recurrent andconvolutional neural network. Finally, it also intends to be a reference book. Key Features:Describes real-world problems that can be solved using machine learningExplains methods for directly applying machine learning techniques to concrete real-world problemsExplains concepts used in Industry 4.0 platforms, including the use and integration of AI, ML, Big Data, NLP, and the Internet of Things (IoT). It does not require prior knowledge of the machine learning This book is meantto be an introduction to artificial intelligence (AI), machine earning, and itsapplications in Industry 4.0. It explains the basic mathematical principlesbut is intended to be understandable for readers who do not have a backgroundin advanced mathematics.
| Erscheint lt. Verlag | 8.7.2003 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Software Entwicklung |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| ISBN-13 | 9789815079180 / 9789815079180 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich