Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Machine Learning for Cybersecurity (eBook)

Innovative Deep Learning Solutions

(Autor)

eBook Download: PDF
2022
48 Seiten
Springer International Publishing (Verlag)
978-3-031-15893-3 (ISBN)

Lese- und Medienproben

Machine Learning for Cybersecurity - Marwan Omar
Systemvoraussetzungen
58,84 inkl. MwSt
(CHF 57,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This SpringerBrief presents the underlying principles of machine learning and how to deploy various deep learning tools and techniques to tackle and solve certain challenges facing the cybersecurity industry.

By implementing innovative deep learning solutions, cybersecurity researchers, students and practitioners can analyze patterns and learn how to prevent cyber-attacks and respond to changing malware behavior. 

The knowledge and tools introduced in this brief can also assist cybersecurity teams to become more proactive in preventing threats and responding to active attacks in real time. It can reduce the amount of time spent on routine tasks and enable organizations to use their resources more strategically. In short, the knowledge and techniques provided in this brief can help make cybersecurity simpler, more proactive, less expensive and far more effective

Advanced-level students in computer science studying machine learning with a cybersecurity focus will find this SpringerBrief useful as a study guide. Researchers and cybersecurity professionals focusing on the application of machine learning tools and techniques to the cybersecurity domain will also want to purchase this SpringerBrief.


Erscheint lt. Verlag 24.9.2022
Reihe/Serie SpringerBriefs in Computer Science
SpringerBriefs in Computer Science
Zusatzinfo VIII, 48 p. 32 illus., 22 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Schlagworte algorithm • Anomaly Detection • convolutional neural networks • cyber attacks • cybersecurity • Dataset • decision trees • Deep learning • local outlier factor • machine learning • Malware Classification • malware detection • Outlier Detection • training data
ISBN-10 3-031-15893-8 / 3031158938
ISBN-13 978-3-031-15893-3 / 9783031158933
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55