Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistical Causal Discovery: LiNGAM Approach - Shohei Shimizu

Statistical Causal Discovery: LiNGAM Approach (eBook)

(Autor)

eBook Download: PDF
2022
94 Seiten
Springer Tokyo (Verlag)
978-4-431-55784-5 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This is the first book to provide a comprehensive introduction to a new semiparametric causal discovery approach known as LiNGAM, with the fundamental background needed to understand it. It offers a general overview of the basics of the LiNGAM approach for causal discovery, estimation principles, and algorithms.

This semiparametric approach is one of the most exciting new topics in the field of causal discovery. The new framework assumes parametric assumptions on the functional forms of structural equations but makes no assumption on the distributions of exogenous variables other than non-Gaussianity. It provides data-analysis tools capable of estimating a much wider class of causal relations even in the presence of hidden common causes. This feature is in contrast to conventional nonparametric approaches based on conditional independence of variables.

This book is highly recommended to readers who seek an in-depth and up-to-date overview of this new causal discovery approach to advance the technique as well as to those who are interested in applying this approach to real-world problems. This LiNGAM approach should become a standard item in the toolbox of statisticians, machine learners, and practitioners who need to perform observational studies.




This is the first book to provide a comprehensive introduction to a new semiparametric causal discovery approach known as LiNGAM, with the fundamental background needed to understand it. It offers a general overview of the basics of the LiNGAM approach for causal discovery, estimation principles, and algorithms. This semiparametric approach is one of the most exciting new topics in the field of causal discovery. The new framework assumes parametric assumptions on the functional forms of structural equations but makes no assumption on the distributions of exogenous variables other than non-Gaussianity. It provides data-analysis tools capable of estimating a much wider class of causal relations even in the presence of hidden common causes. This feature is in contrast to conventional nonparametric approaches based on conditional independence of variables. This book is highly recommended to readers who seek an in-depth and up-to-date overview of this new causal discovery approach to advance the technique as well as to those who are interested in applying this approach to real-world problems. This LiNGAM approach should become a standard item in the toolbox of statisticians, machine learners, and practitioners who need to perform observational studies.
Erscheint lt. Verlag 4.9.2022
Reihe/Serie JSS Research Series in Statistics
JSS Research Series in Statistics
JSS Research Series in Statistics
SpringerBriefs in Statistics
SpringerBriefs in Statistics
Zusatzinfo IX, 94 p. 19 illus.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Causal Discovery • causal inference • lingam • Observational data • Structural Equation Modeling
ISBN-10 4-431-55784-9 / 4431557849
ISBN-13 978-4-431-55784-5 / 9784431557845
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55