Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Applications of the Theory of Groups in Mechanics and Physics - Petre P. Teodorescu, Nicolae-A.P. Nicorovici

Applications of the Theory of Groups in Mechanics and Physics

Buch | Hardcover
446 Seiten
2004 | 2004 ed.
Springer-Verlag New York Inc.
978-1-4020-2046-9 (ISBN)
CHF 299,55 inkl. MwSt
The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non­ contradictory formulations for the investigated phenomena.

1. Elements of General Theory of Groups.- 1 Basic notions.- 2 Topological groups.- 3 Particular Abelian groups.- 2. Lie Groups.- 1 The SO(3) group.- 2 The SU(2) group.- 3 The SU(3) and GL(n, ?) groups.- 4 The Lorentz group.- 3. Symmetry Groups of Differential Equations.- 1 Differential operators.- 2 Invariants and differential equations.- 3 Symmetry groups of certain differential equations.- 4 Methods of study of certain differential equations.- 4. Applications in Mechanics.- 1 Classical models of mechanics.- 2 Symmetry laws and applications.- 3 Space-time symmetries. Conservation laws.- 4 Applications in the theory of vibrations.- 5. Applications in the Theory of Relativity and Theory of Classical Fields.- 1 Theory of Special Relativity.- 2 Theory of electromagnetic field.- 3 Theory of gravitational field.- 6. Applications in Quantum Mechanics and Physics of Elementary Particles.- 1 Non-relativistic quantum mechanics.- 2 Internal symmetries of elementary particles.- 3 Relativistic quantum mechanics.- References.

Erscheint lt. Verlag 30.4.2004
Reihe/Serie Fundamental Theories of Physics ; 140
Zusatzinfo 17 Illustrations, black and white
Verlagsort New York, NY
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie
ISBN-10 1-4020-2046-5 / 1402020465
ISBN-13 978-1-4020-2046-9 / 9781402020469
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 97,95