Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Prädiktion einer langfristigen Fahrzeugzustandsänderung anhand virtueller datengetriebener Sensormodelle - Andreas Udo Sass

Prädiktion einer langfristigen Fahrzeugzustandsänderung anhand virtueller datengetriebener Sensormodelle

Buch | Softcover
159 Seiten
2022
Dr. Hut (Verlag)
978-3-8439-5065-7 (ISBN)
CHF 134,35 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Die immer weiterwachsende Digitalisierung in der Automobilindustrie ermöglicht eine vermehrte Nutzung und Analyse von Fahrzeug(flotten)daten. Die Nutzung dieser Flottendaten verspricht ein hohes Wertschöpfungspotenzial für zukünftige Mehrwertdienste. Dem Kunden können frühzeitig umfangreiche prädiktive Wartungs- und Reparaturinformationen mit Hilfe von datengetriebenen Analysemethoden bereitgestellt werden. In dieser Arbeit wird eine langfristige Fahrzeugzustandsänderung anhand virtueller datengetriebener Sensormodelle untersucht. Als Grundlage dafür werden dynamische CAN-Daten von unternehmensinternen Fahrzeugflotten verwendet.

Im weiteren Verlauf wird ein Konzept entworfen, welches die Schritte der Datenvorverarbeitung und des Data-Minings in Anlehnung an den Prozess der Knowledge Discovery in Databases (KDD) konkretisiert. Mit Hilfe geeigneter Vorverarbeitungen wie z.B. Clusterverfahren und Merkmalsextraktionen kann die Menge der Eingangsdaten reduziert werden. Im Rahmen dieser Vorverarbeitung werden die unterschiedlichen Signale unüberwacht gruppiert. Aus Sequenzen werden statistische Merkmale extrahiert und zur weiteren Verarbeitung genutzt. Unter Anwendung von Regressionsmethoden ist eine Extraktion relevanter Muster und Regeln aus den Daten möglich. Anhand eines konkreten Beispiels aus der Automobilindustrie wird dieses Vorgehen validiert.

Diese Arbeit kann dazu beitragen den steigenden Durchsatz digitaler Daten gezielt zu reduzieren. Es wird gezeigt, dass durch die Verwendung geeigneter Methoden des maschinellen Lernens die Eingangsdatenmenge um ein Vielfaches reduziert und gezielt für (Alterungs-) Vorhersagen genutzt werden kann.
Erscheinungsdatum
Reihe/Serie Informatik
Verlagsort München
Sprache deutsch
Maße 210 x 297 mm
Gewicht 552 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Schlagworte Fahrzeug • Maschinelles Lernen • Zeitreihen
ISBN-10 3-8439-5065-2 / 3843950652
ISBN-13 978-3-8439-5065-7 / 9783843950657
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …

von Dirk Hardy; Annette Schellenberg; Achim Stiefel

Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 37,90