Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Cohesive Subgraph Search Over Large Heterogeneous Information Networks (eBook)

eBook Download: PDF
2022
74 Seiten
Springer International Publishing (Verlag)
978-3-030-97568-5 (ISBN)

Lese- und Medienproben

Cohesive Subgraph Search Over Large Heterogeneous Information Networks - Yixiang Fang, Kai Wang, Xuemin Lin, Wenjie Zhang
Systemvoraussetzungen
48,14 inkl. MwSt
(CHF 46,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs.

The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas.

This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief.



Yixiang Fang is an associate professor in the School of Data Science, Chinese University of Hong Kong, Shenzhen. He received PhD in computer science from the University of Hong Kong in 2017. After that, he worked as a research associate in the School of Computer Science and Engineering, University of New South
Wales, with Prof. Xuemin Lin. His research interests include querying, mining, and analytics of big graph data and big spatial data. He has published extensively in the areas of database and data mining, and most of his papers were published in toptier conferences (e.g., PVLDB, SIGMOD, ICDE, NeurIPS, and IJCAI) and journals
(e.g., TODS, VLDBJ, and TKDE), and one paper was selected as best paper at SIGMOD 2020. He received the 2021 ACM SIGMOD Research Highlight Award. Yixiang is an editorial board member of the journal Information & Processing Management (IPM). He has also served as program committee member for several top conferences (e.g., ICDE, KDD, AAAI, and IJCAI) and invited reviewer for top journals (e.g., TKDE, VLDBJ, and TOC) in the areas of database and data mining.

Kai Wang is an Assistant Professor at Antai College of Economics & Management, Shanghai Jiao Tong University. He received his BSc degree from Zhejiang University in 2016 and his PhD degree from the University of New South Wales in 2020, both in computer science. His research interests lie in big data analytics, especially for the big graph and spatial data. Most of his research works have been published
in top-tier database conferences (e.g., SIGMOD, PVLDB, and ICDE) and journals (e.g., VLDBJ and TKDE).

Xuemin Lin is a Chair Professor at Antai College of Economics & Management, Shanghai Jiao Tong University. He is a Fellow of IEEE. He received his BSc degree in applied math from Fudan University in 1984 and his PhD degree in computer science from the University of Queensland in 1992. Currently, he is the editorin-chief of IEEE Transactions on Knowledge and Data Engineering. His principal research areas are databases and graph visualization.

Wenjie Zhang is a professor and ARC Future Fellow in the School of Computer Science and Engineering at the University of New South Wales in Australia. She received her PhD from the University of New South Wales in 2010. She is an associate editor of IEEE Transactions on Knowledge and Data Engineering. Her research interests lie in large-scale data processing, especially in query processing over spatial and graph/network data.
Erscheint lt. Verlag 6.5.2022
Reihe/Serie SpringerBriefs in Computer Science
SpringerBriefs in Computer Science
Zusatzinfo XIX, 74 p. 20 illus., 5 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik
Schlagworte Big Data Analytics • big graph processing • cohesive subgraph search • dense subgraphs • Graph Algorithm • graph mining • graph query • graph theory • heterogeneous graphs • heterogeneous information networks
ISBN-10 3-030-97568-1 / 3030975681
ISBN-13 978-3-030-97568-5 / 9783030975685
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Herbert Voß

eBook Download (2025)
Lehmanns Media (Verlag)
CHF 19,50
Management der Informationssicherheit und Vorbereitung auf die …

von Michael Brenner; Nils gentschen Felde; Wolfgang Hommel …

eBook Download (2024)
Carl Hanser Fachbuchverlag
CHF 68,35