Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Atomistic Simulations of Glasses (eBook)

Fundamentals and Applications
eBook Download: EPUB
2022
John Wiley & Sons (Verlag)
978-1-118-94024-2 (ISBN)

Lese- und Medienproben

Atomistic Simulations of Glasses -
Systemvoraussetzungen
164,99 inkl. MwSt
(CHF 159,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

A complete reference to computer simulations of inorganic glass materials 

In Atomistic Simulations of Glasses: Fundamentals and Applications, a team of distinguished researchers and active practitioners delivers a comprehensive review of the fundamentals and practical applications of atomistic simulations of inorganic glasses. The book offers concise discussions of classical, first principles, Monte Carlo, and other simulation methods, together with structural analysis techniques and property calculation methods for the models of glass generated from these atomistic simulations, before moving on to practical examples of the application of atomistic simulations in the research of several glass systems. 

The authors describe simulations of silica, silicate, aluminosilicate, borosilicate, phosphate, halide and oxyhalide glasses with up-to-date information and explore the challenges faced by researchers when dealing with these systems. Both classical and ab initio methods are examined and comparison with experimental structural and property data provided. Simulations of glass surfaces and surface-water reactions are also covered.  

Atomistic Simulations of Glasses includes multiple case studies and addresses a variety of applications of simulation, from elucidating the structure and properties of glasses for optical, electronic, architecture applications to high technology fields such as flat panel displays, nuclear waste disposal, and biomedicine. The book also includes: 

  • A thorough introduction to the fundamentals of atomistic simulations, including classical, ab initio, Reverse Monte Carlo simulation and topological constraint theory methods 
  • Important ingredients for simulations such as interatomic potential development, structural analysis methods, and property calculations are covered 
  • Comprehensive explorations of the applications of atomistic simulations in glass research, including the history of atomistic simulations of glasses  
  • Practical discussions of rare earth and transition metal-containing glasses, as well as halide and oxyhalide glasses 
  • In-depth examinations of glass surfaces and silicate glass-water interactions  

Perfect for glass, ceramic, and materials scientists and engineers, as well as physical, inorganic, and computational chemists, Atomistic Simulations of Glasses: Fundamentals and Applications is also an ideal resource for condensed matter and solid-state physicists, mechanical and civil engineers, and those working with bioactive glasses. Graduate students, postdocs, senior undergraduate students, and others who intend to enter the field of simulations of glasses would also find the book highly valuable.  

 



Jincheng Du, PhD, is Professor of materials science and engineering at the University of North Texas. He is Chair of the TC27 Technical Committee on Atomistic Simulation with the International Commission of Glass and is the Editor of the Journal of the American Ceramic Society.

Alastair N. Cormack, PhD, Professor at the New York State College of Ceramics at Alfred University. He is a leading authority in the field of computer modeling of materials, focusing on the atomic-scale physics and chemistry of ceramics and glass.


A complete reference to computer simulations of inorganic glass materials In Atomistic Simulations of Glasses: Fundamentals and Applications, a team of distinguished researchers and active practitioners delivers a comprehensive review of the fundamentals and practical applications of atomistic simulations of inorganic glasses. The book offers concise discussions of classical, first principles, Monte Carlo, and other simulation methods, together with structural analysis techniques and property calculation methods for the models of glass generated from these atomistic simulations, before moving on to practical examples of the application of atomistic simulations in the research of several glass systems. The authors describe simulations of silica, silicate, aluminosilicate, borosilicate, phosphate, halide and oxyhalide glasses with up-to-date information and explore the challenges faced by researchers when dealing with these systems. Both classical and ab initio methods are examined and comparison with experimental structural and property data provided. Simulations of glass surfaces and surface-water reactions are also covered. Atomistic Simulations of Glasses includes multiple case studies and addresses a variety of applications of simulation, from elucidating the structure and properties of glasses for optical, electronic, architecture applications to high technology fields such as flat panel displays, nuclear waste disposal, and biomedicine. The book also includes: A thorough introduction to the fundamentals of atomistic simulations, including classical, ab initio, Reverse Monte Carlo simulation and topological constraint theory methods Important ingredients for simulations such as interatomic potential development, structural analysis methods, and property calculations are covered Comprehensive explorations of the applications of atomistic simulations in glass research, including the history of atomistic simulations of glasses Practical discussions of rare earth and transition metal-containing glasses, as well as halide and oxyhalide glasses In-depth examinations of glass surfaces and silicate glass-water interactions Perfect for glass, ceramic, and materials scientists and engineers, as well as physical, inorganic, and computational chemists, Atomistic Simulations of Glasses: Fundamentals and Applications is also an ideal resource for condensed matter and solid-state physicists, mechanical and civil engineers, and those working with bioactive glasses. Graduate students, postdocs, senior undergraduate students, and others who intend to enter the field of simulations of glasses would also find the book highly valuable.

Jincheng Du, PhD, is Professor of materials science and engineering at the University of North Texas. He is Chair of the TC27 Technical Committee on Atomistic Simulation with the International Commission of Glass and is the Editor of the Journal of the American Ceramic Society. Alastair N. Cormack, PhD, Professor at the New York State College of Ceramics at Alfred University. He is a leading authority in the field of computer modeling of materials, focusing on the atomic-scale physics and chemistry of ceramics and glass.

List of Abbreviations


Acronym or Abbreviation What it stands for
3QMAS NMR triple quantum magic angle spinning nuclear magnetic resonance
a‐Si amorphous silicon
AIMD ab initio molecular dynamics
ASTM American Society for Testing and Materials
AXS anomalous X‐ray scattering
BAD bond angle distribution
BAFS barium aluminum fluorosilicate glass
BB bond‐bending
BKS van Beest–Kramer–van Santen
BMH Born–Mayer–Huggins potential
BO bridging oxygen
BOMD Born–Oppenheimer molecular dynamics
BS bond‐stretching
CAS calcium aluminosilicates
CMAS calcium magnesium aluminosilicates
CN coordination number of atoms
CNAS calcium sodium aluminosilicates
COMB charge optimized many‐body potential
CPMD Car–Parrinello molecular dynamics
CRN continuous random network
CS corner‐sharing
DBO double‐bonded oxygen
DBX Dell, Bray, and Xiao
DCR diffuse charge reactive potentials
DFC differential correlation function
DFT density functional theory
DL_POLY Daresbury Laboratory general purpose molecular dynamic simulation package
DOS density of states
DT Delaunay tetrahedron
ECMR experimentally constrained molecular relaxation
EDFA erbium‐doped fiber amplifier
EDOS electronic density of states
EFG electric field gradient
EMD equilibrium molecular dynamics
EPR electron paramagnetic resonance
EPSR empirical potential structure relaxation
ES edge‐sharing
EXAFS extended X‐ray absorption fine structure
FD fluid dynamics
FEAR force‐enhanced atomic refinement
FEM finite element analysis
FF force field
FFT fast Fourier transform
FFV fractional free volume
FP fluoride phosphate glass
FSDP first sharp diffraction peak
FTIR Fourier‐transform infrared
FV free volume
FWHM full width at half maximum
g‐SiO2 glassy silica
GAP Gaussian approximation potential
GFA glass‐forming ability
GGA generalized gradient approximation
GIPAW gauge‐including projector augmented wave
GST Ge2Sb2Te5
GULP General Utility Lattice Program
GW Hedin's GW method for electronic structure properties
HF Hartree–Fock
HOMO highest occupied molecular orbital
HSE06 Hyed–Scuseria–Ernzerhof hybrid functional
IPR inverse participation ratio
IR infrared
IRO intermediate‐range ordering
ISG international simple glass
kMC, KMC kinetic Monte Carlo
KNCMFATS potassium, sodium, calcium, magnesium iron, and titanium oxide containing silicates
l‐P liquid phosphorus
l‐Si liquid silicon
l‐SiO2 liquid silica
L–J, LJ Lennard–Jones
LAMMPS large‐scale atomic/molecular massively parallel simulator
LD‐DFT ligand field density functional theory
LDA local density approximation
LED light emitting diode
LRO Long‐range order
LUMO lowest unoccupied molecular orbital
MAE mixed alkali effect
MAS magic angle spinning
MAS–NMR magic angle spinning nuclear magnetic resonance
MC Monte Carlo
MD molecular dynamics
MFA mean‐field approximation
ML machine‐learning
MM molecular mechanics
MP2 2nd order Møller–Plesset perturbation theory
MQ melt quench
MQ‐MAS multiple‐quantum magic angle spinning
MRN modified random network
msd, MSD mean square displacement
NAPF sodium alumino‐phospho‐fluorides
NAS sodium aluminosilicates
NBO non‐bridging oxygen
NBOHC non‐bridging oxygen hole centers
NC network connectivity
ND neutron diffraction
NEMD non‐equilibrium molecular dynamics
NMR nuclear magnetic resonance
NPT constant number of atoms N, constant pressure P, constant temperature T ensemble
NVE constant number of atoms N, constant volume V and constant energy E ensemble
NVT constant number of atoms N, constant volume V and constant temperature T ensemble
OLCAO orthogonalized linear combination of atomic orbitals
OLP overlapping polarons tunneling
ONIOM own N‐layer integrated molecular orbital molecular mechanics
PAF principal axis frame
PALS positron annihilation lifetime spectroscopy
PAW projected augmented wave
PBC periodic boundary conditions
PBE Perdew–Burke‐Ernzerhof (exchange‐correlation functional)
PBG phosphate‐based glasses
PD persistence diagram
PES potential energy surface
PME particle mesh Ewald
PMMCS Pedone‐Malavasi‐Menziani‐Cormack‐Segre potentials
POHC phosphorous oxygen hole center
PP pseudo potential or principal peak
QE Quantum Espresso, an open‐source electronic structure calculation code
QM quantum mechanical
QPM quasi‐periodic models
QSPR quantitative...

Erscheint lt. Verlag 29.3.2022
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften Chemie
Technik Maschinenbau
Schlagworte Anorganische Strukturen • Ceramics • Chemie • Chemistry • computer simulation of glasses • computer simulation of inorganic glasses • Glas • glass computer simulation • glass corrosion </p> • glass simulation applications • glass simulation fundamentals • glass surfaces • glass-water reactions • Inorganic Structures • Keramik (Techn.) • Keramischer Werkstoff • keramische Werkstoffe • <p>glass simulation • Materials Science • Materialwissenschaften • Materialwissenschaften / Theorie, Modellierung u. Simulation • Phase separation • Theory, Modeling & Simulation
ISBN-10 1-118-94024-5 / 1118940245
ISBN-13 978-1-118-94024-2 / 9781118940242
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Bring out the best in your images using Adobe Photoshop Elements 2024

von Robin Nichols

eBook Download (2024)
Packt Publishing Limited (Verlag)
CHF 37,10
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 26,35
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20