Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Dynamic Time Series Models using R-INLA - Nalini Ravishanker, Balaji Raman, Refik Soyer

Dynamic Time Series Models using R-INLA

An Applied Perspective
Buch | Hardcover
282 Seiten
2022
Chapman & Hall/CRC (Verlag)
978-0-367-65427-6 (ISBN)
CHF 157,10 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This Book is the outcome of a joint effort to systematically describe the use of R-INLA for analysing time series and showcasing the code and description by several examples. This book introduces the underpinnings of R-INLA and the tools needed for modelling different types of time series using an approximate Bayesian framework.
Dynamic Time Series Models using R-INLA: An Applied Perspective is the outcome of a joint effort to systematically describe the use of R-INLA for analysing time series and showcasing the code and description by several examples. This book introduces the underpinnings of R-INLA and the tools needed for modelling different types of time series using an approximate Bayesian framework.

The book is an ideal reference for statisticians and scientists who work with time series data. It provides an excellent resource for teaching a course on Bayesian analysis using state space models for time series.

Key Features:



Introduction and overview of R-INLA for time series analysis.
Gaussian and non-Gaussian state space models for time series.
State space models for time series with exogenous predictors.
Hierarchical models for a potentially large set of time series.
Dynamic modelling of stochastic volatility and spatio-temporal dependence.

Nalini Ravishanker is a professor in the Department of Statistics at the University of Connecticut, Storrs, USA. Balaji Raman is a statistician at Cogitaas AVA, Mumbai, India. Refik Soyer is a professor in the Department of Decision Sciences at The George Washington University, Washington D.C., USA.

Preface. 1. Bayesian Analysis. 2. A Review of INLA. 3. Modeling Univariate Time Series. 4. More Topics on DLMs with R-INLA. 5. Modeling Time Series with Exogenous Predictors. 6. Structural Time Series Decomposition using R-INLA. 7. Hierarchical DLM. 8. INLA for Multivariate Dynamic Models. 9. Modeling Binary Time Series. 10. Modeling Count Time Series. 11. Modeling Stochastic Volatility. 12. Comparison of R-INLA to Other Bayesian Alternatives. 13. Resources for the User.

Erscheinungsdatum
Zusatzinfo 17 Tables, black and white; 68 Line drawings, color; 20 Line drawings, black and white; 68 Illustrations, color; 20 Illustrations, black and white
Sprache englisch
Maße 178 x 254 mm
Gewicht 880 g
Themenwelt Mathematik / Informatik Mathematik
ISBN-10 0-367-65427-X / 036765427X
ISBN-13 978-0-367-65427-6 / 9780367654276
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90