Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Kernel Mode Decomposition and the Programming of Kernels (eBook)

eBook Download: PDF
2022 | 1st ed. 2021
118 Seiten
Springer International Publishing (Verlag)
978-3-030-82171-5 (ISBN)

Lese- und Medienproben

Kernel Mode Decomposition and the Programming of Kernels - Houman Owhadi, Clint Scovel, Gene Ryan Yoo
Systemvoraussetzungen
80,24 inkl. MwSt
(CHF 78,35)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This monograph demonstrates a new approach to the classical mode decomposition problem through nonlinear regression models, which achieve near-machine precision in the recovery of the modes. The presentation includes a review of generalized additive models, additive kernels/Gaussian processes,  generalized Tikhonov regularization, empirical mode decomposition, and Synchrosqueezing, which are all related to and generalizable under the proposed framework.

Although kernel methods have strong theoretical foundations, they require the prior selection of a good kernel. While the usual approach to this kernel selection problem is hyperparameter tuning, the objective of this monograph is to present an alternative (programming) approach to the kernel selection problem while using mode decomposition as a prototypical pattern recognition problem. In this approach, kernels are programmed for the task at hand through the programming of interpretable regression networks in the contextof additive Gaussian processes.

It is suitable for engineers, computer scientists, mathematicians, and students in these fields working on kernel methods, pattern recognition, and mode decomposition problems.




Erscheint lt. Verlag 1.1.2022
Reihe/Serie Surveys and Tutorials in the Applied Mathematical Sciences
Surveys and Tutorials in the Applied Mathematical Sciences
Zusatzinfo X, 118 p. 41 illus., 31 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Schlagworte Additive Models • Empirical Mode Decomposition • Gaussian Process Regression • Kernel Methods • time-frequency decomposition
ISBN-10 3-030-82171-4 / 3030821714
ISBN-13 978-3-030-82171-5 / 9783030821715
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eine anwendungsorientierte Einführung

von Peter Tittmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15
Stochastik: von Abweichungen bis Zufall

von René L. Schilling

eBook Download (2025)
De Gruyter (Verlag)
CHF 34,15