Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Laminational Models for Some Spaces of Polynomials of Any Degree (eBook)

eBook Download: PDF

105 Seiten
American Mathematical Society (Verlag)
978-1-4704-6144-7 (ISBN)
Systemvoraussetzungen
124,73 inkl. MwSt
(CHF 119,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The so-called "e;pinched disk"e; model of the Mandelbrot set is due to A. Douady, J. H. Hubbard and W. P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely speaking, "e;pinches"e; the disk in the plane (whence the name of the model). The significance of the model lies in particular in the fact that this quotient is planar and therefore can be easily visualized. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated MLC conjecture stating that the Mandelbrot set is locally connected. For parameter spaces of higher degree polynomials no combinatorial model is known. One possible reason may be that the higher degree analog of the MLC conjecture is known to be false. The authors investigate to which extent a geodesic lamination is determined by the location of its critical sets and when different choices of critical sets lead to essentially the same lamination. This yields models of various parameter spaces of laminations similar to the "e;pinched disk"e; model of the Mandelbrot set.
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4704-6144-7 / 1470461447
ISBN-13 978-1-4704-6144-7 / 9781470461447
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich