Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Modeling Brain Function - Daniel J. Amit

Modeling Brain Function

The World of Attractor Neural Networks

(Autor)

Buch | Softcover
524 Seiten
1992
Cambridge University Press (Verlag)
978-0-521-42124-9 (ISBN)
CHF 125,65 inkl. MwSt
A group of researchers, adapting knowledge and techniques from a wide range of scientific disciplines, have made progress understanding memory by studying the properties of models of neural networks. This book introduces and explains techniques bought from physics to the study of neural networks and the insights they have stimulated.
One of the most exciting and potentially rewarding areas of scientific research is the study of the principles and mechanisms underlying brain function. It is also of great promise to future generations of computers. A growing group of researchers, adapting knowledge and techniques from a wide range of scientific disciplines, have made substantial progress understanding memory, the learning process, and self organization by studying the properties of models of neural networks - idealized systems containing very large numbers of connected neurons, whose interactions give rise to the special qualities of the brain. This book introduces and explains the techniques brought from physics to the study of neural networks and the insights they have stimulated. It is written at a level accessible to the wide range of researchers working on these problems - statistical physicists, biologists, computer scientists, computer technologists and cognitive psychologists. The author presents a coherent and clear nonmechanical presentation of all the basic ideas and results. More technical aspects are restricted, wherever possible, to special sections and appendices in each chapter. The book is suitable as a text for graduate courses in physics, electrical engineering, computer science and biology.

Preface; 1. Introduction; 2. The basic attractor neural network; 3. General ideas concerning dynamics; 4. Symmetric neural networks at low memory loading; 5. Storage and retrieval of temporal sequences; 6. Storage capacity of ANNs; 7. Robustness - getting closer to biology; 8. Memory data structures; 9. Learning; 10. Hareware implementations of neural networks; Glossary; Index.

Erscheint lt. Verlag 26.6.1992
Zusatzinfo 1 Tables, unspecified; 4 Halftones, unspecified; 103 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 152 x 229 mm
Gewicht 710 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 0-521-42124-1 / 0521421241
ISBN-13 978-0-521-42124-9 / 9780521421249
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20