Singular Integrals in Quantum Euclidean Spaces
2022
American Mathematical Society (Verlag)
978-1-4704-4937-7 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-4937-7 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Establisesh the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. The results go beyond Connes' pseudodifferential calculus for rotation algebras, thanks to a new form of Calderon-Zygmund theory over these spaces.
We shall establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. Our results go beyond Connes' pseudodifferential calculus for rotation algebras, thanks to a new form of Calder´on-Zygmund theory over these spaces which crucially incorporates nonconvolution kernels. We deduce Lp-boundedness and Sobolev p-estimates for regular, exotic and forbidden symbols in the expected ranks. In the L2 level both Calder´on-Vaillancourt and Bourdaud theorems for exotic and forbidden symbols are also generalized to the quantum setting. As a basic application of our methods, we prove Lp-regularity of solutions for elliptic PDEs.
We shall establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. Our results go beyond Connes' pseudodifferential calculus for rotation algebras, thanks to a new form of Calder´on-Zygmund theory over these spaces which crucially incorporates nonconvolution kernels. We deduce Lp-boundedness and Sobolev p-estimates for regular, exotic and forbidden symbols in the expected ranks. In the L2 level both Calder´on-Vaillancourt and Bourdaud theorems for exotic and forbidden symbols are also generalized to the quantum setting. As a basic application of our methods, we prove Lp-regularity of solutions for elliptic PDEs.
Adrian M. Gonzalez-Perez, Universidad Autonoma de Madrid, Spain. Marius Junge, University of Illinois at Urbana-Champaign, IL. Javier Parcet, Instituto de Ciencias Matematicas, Madrid, Spain.
| Erscheinungsdatum | 10.03.2022 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Zusatzinfo | Illustrations |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 204 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 1-4704-4937-4 / 1470449374 |
| ISBN-13 | 978-1-4704-4937-7 / 9781470449377 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90