Research in Mathematics at Cameron University
Nova Science Publishers Inc (Verlag)
9781536194173 (ISBN)
Professor, Department of Mathematical Sciences, Cameron University, Lawton, Oklahoma, USA.
Preface; Author Contact Information; The History of Newtons Method and Extended Classical Results; Extended Global Convergence of Iterative Methods; Extended Gauss-Newton-Approximate Projection Methods of Constrained Nonlinear Least Squares Problems; Convergence Analysis of Inexact Gauss-Newton Like for Solving Systems; Local Convergence of the Gauss-Newton Scheme on Hilbert Spaces Under a Restricted Convergence Domain; Ball Convergence for Inexact Newton-type Conditional Gradient Solver for Constrained Systems; Newton-like Methods with Recursive Approximate Inverses; Updated Mesh Independence Principle; Ball Convergence for Ten Solvers Under the Same Set of Conditions; Extended Newtons Solver for Generalized Equations Using a Restricted Convergence Domain; Extended Newtons Method for Solving Generalized Equations: Kantorovichs Approach; Extended Robust Convergence Analysis of Newtons Method for Cone Inclusion Problems in Banach Spaces; Extended and Robust Kantorovichs Theorem on the Inexact Newtons Method with Relative Residual Error Tolerance; Extended Local Convergence for Iterative Schemes Using the Gauge Function Theory; Improved Local Convergence of Inexact Newton Methods under Average Lipschitz-type Conditions; Semi-Local Convergence of Newtons Method Using the Gauge Function Theory: An Extension; Extending the Semi-Local Convergence of Newtons Method Using the Gauge Theory; Global Convergence for Chebyshevs Method; Extended Convergence of Efficient King-Werner-Type Methods of Order 1+√2; Extended Convergence for Two Chebyshev-Like Methods; Extended Convergence Theory for Newton-Like Methods of Bounded Deterioration; Extending the Kantorovich Theorem for Solving Equations Using Telescopic Series; Extended ω-Convergence Conditions for the Newton-Kantorovich Method; Extended Semilocal Convergence Analysis for Directional Newton Method; Extended Convergence of Damped Newtons Method; Extended Convergence Analysis of a One-Step Intermediate Newton Iterative Scheme for Nonlinear Equations; Enlarging the Convergence Domain of Secant-Type Methods; Two-Step Newton-Type Method for Solving Equations; Two-Step Secant-Type Method for Solving Equations; Unified Convergence for General Iterative Schemes; Extending the Applicability of Gauss-Newton Method for Convex Composite Optimization; Local Convergence Comparison Between Newtons and the Secant Method: Part-I; Convergence Comparison Between Newtons and Secant Method: Part-II; Extended Convergence Domains for a Certain Class of Fredholm Hammerstein Equations; Extended Convergence of the Gauss-Newton-Kurchatov Method; Extended Semi-Local Convergence of Newtons Method under Conditions on the Second Derivative; Extended Convergence for the Secant Method Under Mysovskii-like Conditions; Glossary of Symbols.
| Erscheinungsdatum | 28.04.2021 |
|---|---|
| Sprache | englisch |
| Maße | 155 x 230 mm |
| Gewicht | 696 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
| ISBN-13 | 9781536194173 / 9781536194173 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich