Hilbert Space Operators
Birkhauser Boston Inc (Verlag)
978-0-8176-3242-7 (ISBN)
1 Invariant Subspaces.- Problem 1.1 Closure.- Problem 1.2 Kernel and Range.- Problem 1.3 Null Product.- Problem 1.4 Operator Equation.- Problem 1.5 Nilpotent and Algebraic.- Problem 1.6 Polynomials.- Problem 1.7 Totally Cyclic.- Problem 1.8 Densely Intertwined.- Problem 1.9 Hyperinvariant.- Problem 1.10 Quasiaffine Transform.- Solutions.- 2 Hilbert Space Operators.- Problem 2.1 Adjoint.- Problem 2.2 Nonnegative.- Problem 2.3 Contraction.- Problem 2.4 Normal.- Problem 2.5 Isometry.- Problem 2.6 Unitary.- Problem 2.7 Projection.- Problem 2.8 Mutually Orthogonal.- Problem 2.9 Increasing.- Solutions.- 3 Convergence and Stability.- Problem 3.1 Diagonal.- Problem 3.2 Product.- Problem 3.3 * -Preserving.- Problem 3.4 Nonnegative.- Problem 3.5 Monotone.- Problem 3.6 Self-Adjoint.- Problem 3.7 Commutant.- Problem 3.8 Convex Cone.- Problem 3.9 Absolute Value.- Solutions.- 4 Reducing Subspaces.- Problem 4.1 T-Invariant.- Problem 4.2 Matrix Form.- Problem 4.3 T*-Invariant.- Problem 4.4 T and T*-Invariant.- Problem 4.5 Commuting with T and T*.- Problem 4.6 Reducible.- Problem 4.7 Restriction.- Problem 4.8 Direct Sum.- Problem 4.9 Unitarily Equivalent.- Problem 4.10 Unitary Restriction.- Solutions.- 5 Shifts.- Problem 5.1 Unilateral.- Problem 5.2 Bilateral.- Problem 5.3 Multiplicity.- Problem 5.4 Unitarily Equivalent.- Problem 5.5 Reducible.- Problem 5.6 Irreducible.- Problem 5.7 Rotation.- Problem 5.8 Riemann-Lebesgue Lemma.- Problem 5.9 Weighted Shift.- Problem 5.10 Nonnegative Weights.- Solutions.- 6 Decompositions.- Problem 6.1 Strong Limit.- Problem 6.2 Projection.- Problem 6.3 Kernels.- Problem 6.4 Kernel Decomposition.- Problem 6.5 Intertwined to Isometry.- Problem 6.6 Dual Limits.- Problem 6.7 Nagy-Foia?-Langer Decomposition.- Problem 6.8 von Neumann-Wold Decomposition.-Problem 6.9 Another Decomposition.- Problem 6.10 Foguel Decomposition.- Problem 6.11 Isometry.- Problem 6.12 Coisometry.- Problem 6.13 Strongly Stable.- Problem 6.14 Property PF.- Problem 6.15 Direct Summand.- Solutions.- 7 Hyponormal Operators.- Problem 7.1 Quasinormal.- Problem 7.2 Strong Stability.- Problem 7.3 Hyponormal.- Problem 7.4 Direct Proof.- Problem 7.5 Invariant Subspace.- Problem 7.6 Restriction.- Problem 7.7 Normal.- Problem 7.8 Roots of Powers.- Problem 7.9 Normaloid.- Problem 7.10 Power Inequality.- Problem 7.11 Unitarily Equivalent.- Problem 7.12 Subnormal.- Problem 7.13 Not Subnormal.- Problem 7.14 Distinct Weights.- Solutions.- 8 Spectral Properties.- Problem 8.1 Spectrum.- Problem 8.2 Eigenspace.- Problem 8.3 Examples.- Problem 8.4 Residual Spectrum.- Problem 8.5 Weighted Shift.- Problem 8.6 Uniform Stability.- Problem 8.7 Finite Rank.- Problem 8.8 Stability for Compact.- Problem 8.9 Continuous Spectrum.- Problem 8.10 Compact Contraction.- Problem 8.11 Normal.- Problem 8.12 Square Root.- Problem 8.13 Fuglede Theorem.- Problem 8.14 Quasinormal.- Problem 8.15 Fuglede-Putnam Theorem.- Problem 8.16 Reducible.- Solutions.- 9 Paranormal Operators.- Problem 9.1 Quasihyponormal.- Problem 9.2 Semi-quasihyponormal.- Problem 9.3 Paranormal.- Problem 9.4 Square of Paranormal.- Problem 9.5 Alternative Definition.- Problem 9.6 Unitarily Equivalent.- Problem 9.7 Weighted Shift.- Problem 9.8 Equivalences.- Problem 9.9 Not Paranormal.- Problem 9.10 Projection ? Nilpotent.- Problem 9.11 Shifted Operators.- Problem 9.12 Shifted Projections.- Problem 9.13 Shifted Seif-Adjoints.- Problem 9.14 Examples.- Problem 9.15 Hyponormal.- Problem 9.16 Invertible.- Problem 9.17 Paranormal Inequality.- Problem 9.18 Normaloid.- Problem 9.19 Cohyponormal.- Problem 9.20 StronglyStable.- Problem 9.21 Quasinormal.- Solutions.- 10 Proper Contractions.- Problem 10.1 Equivalences.- Problem 10.2 Diagonal.- Problem 10.3 Compact.- Problem 10.4 Adjoint.- Problem 10.5 Paranormal.- Problem 10.6 Nagy-Foia? Classes.- Problem 10.7 Weakly Stable.- Problem 10.8 Hyponormal.- Problem 10.9 Subnormal.- Problem 10.10 Quasinormal.- Problem 10.11 Direct Proof.- Problem 10.12 Invariant Subspace.- Solutions.- 11 Quasireducible Operators.- Problem 11.1 Alternative Definition.- Problem 11.2 Basic Properties.- Problem 11.3 Nilpotent.- Problem 11.4 Index 2.- Problem 11.5 Higher Indices.- Problem 11.6 Product.- Problem 11.7 Unitarily Equivalent.- Problem 11.8 Similarity.- Problem 11.9 Unilateral Shift.- Problem 11.10 Isometry.- Problem 11.11 Quasinormal.- Problem 11.12 Weighted Shift.- Problem 11.13 Subnormal.- Problem 11.14 Commutator.- Problem 11.15 Reducible.- Problem 11.16 Normal.- Solutions.- 12 The Lomonosov Theorem.- Problem 12.1 Hilden’s Proof.- Problem 12.2 Lomonosov Lemma.- Problem 12.3 Lomonosov Theorem.- Problem 12.4 Extension.- Problem 12.5 Quasireducible.- Problem 12.6 Hyponormal.- Solutions.- References.
| Zusatzinfo | XIII, 149 p. |
|---|---|
| Verlagsort | Secaucus |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Naturwissenschaften ► Physik / Astronomie | |
| ISBN-10 | 0-8176-3242-5 / 0817632425 |
| ISBN-13 | 978-0-8176-3242-7 / 9780817632427 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich