It is posited that a form of the Riemann conjecture is verified in each strip. It is shown that each integer in the infinite set of the integers has an associated Riemann zero and that the imaginary parts of the complex number at which the zeros are located are proportional to the 'local' asymptote to the prime counting function. A connection between the prime counting function and the zeta function is established. A limited distribution of the Riemann zeros corresponding to their respective prime numbers is constructed and it is seen that, at least over this range, the two are correlated, albeit non-linearly.
It is demonstrated that the imaginary part of the complex number locating a Riemann zero may, for any integer that can be articulated, be obtained by a few keystrokes of a hand calculator.
| Erscheint lt. Verlag | 15.4.2021 |
|---|---|
| Verlagsort | München |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Schlagworte | hypothesis • Riemann |
| ISBN-13 | 9783346388575 / 9783346388575 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich