Machine Learning For Dummies (eBook)
John Wiley & Sons (Verlag)
978-1-119-72406-3 (ISBN)
John Mueller has produced hundreds of books and articles on topics ranging from networking to home security and from database management to heads-down programming. Luca Massaron is a senior expert in data science who has been involved with quantitative methods since 2000. He is a Google Developer Expert (GDE) in machine learning.
Introduction 1
Part 1: Introducing How Machines Learn 5
Chapter 1: Getting the Real Story about AI 7
Chapter 2: Learning in the Age of Big Data 23
Chapter 3: Having a Glance at the Future 37
Part 2: Preparing Your Learning Tools 47
Chapter 4: Installing a Python Distribution 49
Chapter 5: Beyond Basic Coding in Python 67
Chapter 6: Working with Google Colab 87
Part 3: Getting Started with the Math Basics 115
Chapter 7: Demystifying the Math Behind Machine Learning 117
Chapter 8: Descending the Gradient 139
Chapter 9: Validating Machine Learning 153
Chapter 10: Starting with Simple Learners 175
Part 4: Learning from Smart and Big Data 197
Chapter 11: Preprocessing Data 199
Chapter 12: Leveraging Similarity 221
Chapter 13: Working with Linear Models the Easy Way 243
Chapter 14: Hitting Complexity with Neural Networks 271
Chapter 15: Going a Step Beyond Using Support Vector Machines 307
Chapter 16: Resorting to Ensembles of Learners 319
Part 5: Applying Learning to Real Problems 339
Chapter 17: Classifying Images 341
Chapter 18: Scoring Opinions and Sentiments 361
Chapter 19: Recommending Products and Movies 383
Part 6: The Part of Tens 405
Chapter 20: Ten Ways to Improve Your Machine Learning Models 407
Chapter 21: Ten Guidelines for Ethical Data Usage 415
Chapter 22: Ten Machine Learning Packages to Master 423
Index 431
| Erscheint lt. Verlag | 7.1.2021 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
| Schlagworte | AI • Anaconda • Artificial Intelligence • Big Data • Computer Science • Computer Science - General Interest • Informatik • linear models • machine learning • Machine Learning Models • machine learning tools • Maschinelles Lernen • Populäre Themen i. d. Informatik • Python • Python distribution • R distribution • R language • R Studio • Support Vector Machines • using big data |
| ISBN-10 | 1-119-72406-6 / 1119724066 |
| ISBN-13 | 978-1-119-72406-3 / 9781119724063 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich