Cost-Benefit Analysis in Multiple Time Series Prediction
Seiten
2020
Scholars' Press (Verlag)
978-613-8-94331-0 (ISBN)
Scholars' Press (Verlag)
978-613-8-94331-0 (ISBN)
- Titel nicht im Sortiment
- Artikel merken
We are proposing a new methodology to select optimum number of subset of sensors to predict energy production in a network of energy generation plants in the USA. Multiple time series data are collected for the period 2002-2004 from 200 power plants across the USA. Prediction models were generated using Support Vector Machines (SVM), Multilayer Perceptron (MLP), and Multiple Regression (MR) techniques. A cost benefit analysis was used to estimate the optimum number of measurements to be used to forecast the total energy generation that balances the expenses of the system with the prediction accuracy.
Walgampaya, Chamila Chamila Walgampaya is a Senior Lecturer in the Faculty of Engineering, University of Peradeniya, Sri Lanka. He received his B.Sc. degree from the Faculty of Engineering, University of Peradeniya in 2001. He earned his MS degrees in Computer Engineering from the University of Louisville, USA, in 2006.
| Erscheinungsdatum | 02.08.2021 |
|---|---|
| Sprache | englisch |
| Maße | 152 x 229 mm |
| Gewicht | 191 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Schlagworte | Multilayer Perceptron • multiple regression • Multiple Time Series • Support Vector Machines |
| ISBN-10 | 613-8-94331-7 / 6138943317 |
| ISBN-13 | 978-613-8-94331-0 / 9786138943310 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90