Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Support-Vector Machines -

Support-Vector Machines

Evolution and Applications

Pooja Saigal (Herausgeber)

Buch | Hardcover
197 Seiten
2020
Nova Science Publishers Inc (Verlag)
978-1-5361-8757-1 (ISBN)
CHF 247,85 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book reviews the basics of Support Vector Machines (SVM), their evolution and applications in diverse fields. SVM is an efficient supervised learning approach popularly used for pattern recognition, medical image classification, face recognition and various other applications. In the last 25 years, a lot of research has been carried out to extend the use of SVM to a variety of domains. This book is an attempt to present the description of a conventional SVM, along with discussion of its different versions and recent application areas. The first chapter of this book introduces SVM and presents the optimization problems for a conventional SVM. Another chapter discusses the journey of SVM over a period of more than two decades. SVM is proposed as a separating hyperplane classifier that partitions the data belonging to two classes. Later on, various versions of SVM are proposed that obtain two hyperplanes instead of one. A few of these variants of SVM are discussed in this book. The major part of this book discusses some interesting applications of SVM in areas like quantitative diagnosis of rotor vibration process faults through power spectrum entropy-based SVM, hardware architectures of SVM applied in pattern recognition systems, speaker recognition using SVM, classification of iron ore in mines and simultaneous prediction of the density and viscosity for the ternary system water ethanolethylene glycol ionic liquids. The latter part of the book is dedicated to various approaches for the extension of SVM and similar classifiers to a multi-category framework, so that they can be used for the classification of data with more than two classes.

Pooja Saigal, School of Information Technology, Vivekananda Institute of Professional Studies, New Delhi, India

Preface; Acknowledgements; Introduction to Support Vector Machines; Journey of Support Vector Machines: From Maximum-Margin Hyperplane to a Pair of Non-Parallel Hyperplanes; Power Spectrum Entropy-Based Support Vector Machine for Quantitative Diagnosis of Rotor Vibration Process Faults; Hardware Architectures of Support Vector Machine Applied in Pattern Recognition Systems; Speaker Recognition Using Support Vector Machine; Application of Support Vector Machine (SVM) in Classification of Iron Ores in Mines; Multi-Category Classification; Simultaneous Prediction of the Density and Viscosity for the Ternary System Water-EthanolEthylene Glycol Ionic Liquids Using Support Vector Machine.

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 155 x 230 mm
Gewicht 456 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
ISBN-10 1-5361-8757-7 / 1536187577
ISBN-13 978-1-5361-8757-1 / 9781536187571
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …

von Dirk Hardy; Annette Schellenberg; Achim Stiefel

Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 37,90