Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Big Data in Psychiatry and Neurology -

Big Data in Psychiatry and Neurology

Ahmed Moustafa (Herausgeber)

Buch | Softcover
384 Seiten
2021
Academic Press Inc (Verlag)
978-0-12-822884-5 (ISBN)
CHF 205,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Big Data in Psychiatry and Neurology provides an up-to-date overview of achievements in the field of big data in Psychiatry and Medicine, including applications of big data methods to aging disorders (e.g., Alzheimer’s disease and Parkinson’s disease), mood disorders (e.g., major depressive disorder), and drug addiction. This book will help researchers, students and clinicians implement new methods for collecting big datasets from various patient populations. Further, it will demonstrate how to use several algorithms and machine learning methods to analyze big datasets, thus providing individualized treatment for psychiatric and neurological patients.

As big data analytics is gaining traction in psychiatric research, it is an essential component in providing predictive models for both clinical practice and public health systems. As compared with traditional statistical methods that provide primarily average group-level results, big data analytics allows predictions and stratification of clinical outcomes at an individual subject level.

Dr. Ahmed Moustafa is the Head of School of Psychology and Professor of Psychology and Computational Modeling at Bond University, Australia. He obtained his BSc in Mathematics and Computer Science at Cairo University, Egypt, and his PhD in Cognitive Science at the University of Lafayette, USA. Dr. Moustafa specializes in computational and neuropsychological studies of addiction, schizophrenia, Parkinson’s disease, PTSD, depression, and Alzheimer’s disease. He is the Editor-in-Chief of Discover Psychology (Springer) and has edited ten books, including Elsevier’s Cognitive, Clinical, and Neural Aspects of Drug Addiction; The Psychology and Neuroscience of Impulsivity; Cognitive and Behavioral Dysfunction in Schizophrenia; Mental Health Effects of COVID-19; Alzheimer’s Disease; Cybersecurity and Cognitive Science; Big Data in Psychiatry and Neurology; The Nature of Depression; and Social Cognition in Psychosis.

1. Best practices for supervised machine learning when examining biomarkers in clinical populations
Benjamin G. Schultz, Zaher Joukhadar, Usha Nattala, Maria del Mar Quiroga, Francesca Bolk, and Adam P. Vogel

2. Big data in personalized healthcare
Lidong Wang and Cheryl Alexander

3. Longitudinal data analysis: The multiple indicators growth curve model approach
Thierno M.O. Diallo and Ahmed A. Moustafa

4. Challenges and solutions for big data in personalized healthcare
Tim Hulsen

5. Data linkages in epidemiology
Sinead Moylett

6. Neutrosophic rule-based classification system and its medical applications
Sameh H. Basha, Areeg Abdalla, and Aboul Ella Hassanien

7. From complex to neural networks
Nicola Amoroso and Loredana Bellantuono

8. The use of Big Data in psychiatry—The role of administrative databases
Manuel Goncalves-Pinho and Alberto Freitas

9. Predicting the emergence of novel psychoactive substances with big data
Robert Todd Perdue and James Hawdon

10. Hippocampus segmentation in MR images: Multiatlas methods and deep learning methods
Hancan Zhu, Shuai Wang, Liangqiong Qu, and Dinggang Shen

11. A scalable medication intake monitoring system
Diane Myung-Kyung Woodbridge and Kevin Bengtson Wong

12. Evaluating cascade prediction via different embedding techniques for disease mitigation
Abhinav Choudhury, Shubham Shakya, Shruti Kaushik, and Varun Dutt

13. A two-stage classification framework for epileptic seizure prediction using EEG wavelet-based features
Sahar Elgohary, Mahmoud I. Khalil, and Seif Eldawlatly

14. Visual neuroscience in the age of big data and artificial intelligence
Kohitij Kar

15. Application of big data and artificial intelligence approaches in diagnosis and treatment of neuropsychiatric diseases
Qiurong Song, Tianhui Huang, Xinyue Wang, Jingxiao Niu, Wang Zhao, Haiqing Xu, and Long Lu

16. Leveraging big data to augment evidence-informed precise public health response
G.V. Asokan and Mohammed Yousif Abbas Mohammed

17. How big data analytics is changing the face of precision medicine in women‘s health
Maryam Panahiazar, Maryam Karimzadehgan, Roohallah Alizadehsani, Dexter Hadley, and Ramin E. Beygui

Erscheinungsdatum
Verlagsort San Diego
Sprache englisch
Maße 152 x 229 mm
Gewicht 570 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
Medizin / Pharmazie Medizinische Fachgebiete Neurologie
Medizin / Pharmazie Medizinische Fachgebiete Psychiatrie / Psychotherapie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 0-12-822884-9 / 0128228849
ISBN-13 978-0-12-822884-5 / 9780128228845
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Leitfaden für die Praxis

von Christiana Klingenberg; Kristin Weber

Buch (2025)
Hanser (Verlag)
CHF 69,95