Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Einstieg in Deep Reinforcement Learning (eBook)

KI-Agenten mit Python und PyTorch programmieren
eBook Download: PDF
2020
Carl Hanser Verlag GmbH & Co. KG
978-3-446-46608-1 (ISBN)

Lese- und Medienproben

Einstieg in Deep Reinforcement Learning - Alexander Zai, Brandon Brown
Systemvoraussetzungen
39,99 inkl. MwSt
(CHF 38,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
- Grundlegende Konzepte und Terminologie
- Praktischer Einsatz mit PyTorch
- Projekte umsetzen

Dieses Buch zeigt Ihnen, wie Sie Agenten programmieren, die basierend auf direktem Feedback aus ihrer Umgebung selbstständig lernen und sich dabei verbessern. Sie werden Netzwerke mit dem beliebten PyTorch-Deep-Learning-Framework aufbauen, um bestärkende Lernalgorithmen zu erforschen. Diese reichen von Deep-Q-Networks über Methoden zur Gradientenmethode bis hin zu evolutionären Algorithmen.
Im weiteren Verlauf des Buches wenden Sie Ihre Kenntnisse in praktischen Projekten wie der Steuerung simulierter Roboter, der Automatisierung von Börsengeschäften oder dem Aufbau eines Spiel-Bots an.

Aus dem Inhalt:
- Strukturierungsprobleme als Markov-Entscheidungsprozesse
- Beliebte Algorithmen wie Deep Q-Networks, Policy Gradient-Methode und Evolutionäre Algorithmen und die Intuitionen, die sie antreiben
- Anwendung von Verstärkungslernalgorithmen auf reale Probleme

Alexander Zai ist Machine Learning Engineer bei Amazon AI und arbeitet an MXNet, das eine Reihe von AWS-Maschinenlernprodukten unterstützt. Er ist auch Mitbegründer von Codesmith, einem Bootcamp für Softwareentwicklung mit Niederlassungen in Los Angeles und New York. Brandon Brown ist Arzt und Programmierer. Er bloggt über maschinelles Lernen und Datenanalyse auf outlace.com.

Erscheint lt. Verlag 12.10.2020
Verlagsort München
Sprache deutsch
Original-Titel Deep Reinforcement Learning in Action (US ISBN: 978-1617295430)
Themenwelt Mathematik / Informatik Informatik
Schlagworte Agententechnologie • AlphaGo • Autonomes Fahren • bestärkendes Lernen • Deep learning • Deep Q-Networks • Künstliche Intelligenz • machine learning • Python • PyTorch
ISBN-10 3-446-46608-8 / 3446466088
ISBN-13 978-3-446-46608-1 / 9783446466081
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Herbert Voß

eBook Download (2025)
Lehmanns Media (Verlag)
CHF 19,50
Management der Informationssicherheit und Vorbereitung auf die …

von Michael Brenner; Nils gentschen Felde; Wolfgang Hommel …

eBook Download (2024)
Carl Hanser Fachbuchverlag
CHF 68,35