Mathematical Foundations of Big Data Analytics
Springer Berlin (Verlag)
978-3-662-62520-0 (ISBN)
Vladimir Shikhman is a professor of Economathematics at Chemnitz University of Technology.David Müller is one of his doctoral students.
Preface.- 1 Ranking.- 2 Online Learning.- 3 Recommendation Systems.- 4 Classification.- 5 Clustering.- 6 Linear Regression.- 7 Sparse Recovery.- 8 Neural Networks.- 9 Decision Trees.- 10 Solutions.
"This book is apt for courses that introduce the fundamentals of data science/big data analytics at the graduate level. ... The book can be used in courses devoted to the foundational mathematics of data science and analytics. It should be noted that sound mathematical knowledge ... is required for reading. The case studies and exercises make it a quality teaching material." (Bálint Molnár, Computing Reviews, August 19, 2022)
"Mathematical foundations of big data analytics is a very welcome and timely addition to the growing area of big data analytics. ... Mathematical foundations are very carefully covered in each chapter, which justifies the title. There is a good listing of references for further study, as well as an index for easy reference. This book could be the basis for a one-semester graduate level course with an emphasis on mathematical foundations, supplemented by good programming projects." (S. Lakshmivarahan, Computing Reviews, July 5, 2021)
| Erscheinungsdatum | 05.03.2022 |
|---|---|
| Zusatzinfo | XI, 273 p. 53 illus., 21 illus. in color. Textbook for German language market. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 168 x 240 mm |
| Gewicht | 492 g |
| Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
| Mathematik / Informatik ► Informatik ► Netzwerke | |
| Mathematik / Informatik ► Mathematik | |
| Schlagworte | Analysis of Big Data • classification • Clustering • decision trees • Economic Applications of Big Data Analytics • Existence of a Ranking • Interdisciplinary Applications of Big Data Analytics • linear regression • Mathematical Models for Big Data Analytics • Neural networks • Online Learning • Pagerank • Recommendation Systems • sparse recovery |
| ISBN-10 | 3-662-62520-2 / 3662625202 |
| ISBN-13 | 978-3-662-62520-0 / 9783662625200 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich