Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hyperparameter Optimization in Machine Learning - Tanay Agrawal

Hyperparameter Optimization in Machine Learning

Make Your Machine Learning and Deep Learning Models More Efficient

(Autor)

Buch | Softcover
166 Seiten
2020 | 1st ed.
Apress (Verlag)
978-1-4842-6578-9 (ISBN)
CHF 82,35 inkl. MwSt
Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.



This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you’ll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.



The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you’ll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.



Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.



Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work. What You Will Learn





Discover how changes in hyperparameters affect the model’s performance.
Apply different hyperparameter tuning algorithms to data science problems
Work with Bayesian optimization methods to create efficient machine learning and deep learning models
Distribute hyperparameter optimization using a cluster of machines
Approach automated machine learning using hyperparameter optimization

Who This Book Is For 



Professionals and students working with machine learning.

Tanay is a deep learning engineer and researcher, who graduated in 2019 in Bachelor of Technology from SMVDU, J&K. He is currently working at Curl Hg on SARA, an OCR platform. He is also advisor to Witooth Dental Services and Technologies. He started his career at MateLabs working on an AutoML Platform, Mateverse. He has worked extensively on hyperparameter optimization. He has also delivered talks on hyperparameter optimization at conferences including PyData, Delhi and PyCon, India. 

Chapter 1: Hyperparameters.- Chapter 2: Brute Force Hyperparameter Tuning.- Chapter 3: Distributed Hyperparameter Optimization.- Chapter 4: Sequential Model-Based Global Optimization and Its Hierarchical.- Chapter 5: Using HyperOpt.- Chapter 6: Hyperparameter Generating Condition Generative Adversarial Neural.

Erscheinungsdatum
Zusatzinfo 4 Illustrations, color; 49 Illustrations, black and white; XIX, 166 p. 53 illus., 4 illus. in color.
Verlagsort Berkley
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Itelligence • bayesian optimization • Hyperas • Hyperopt • Hyper Parameter Optimization • Hyperparameter Tuning • machine learning • Python • Sequence model based optimization
ISBN-10 1-4842-6578-5 / 1484265785
ISBN-13 978-1-4842-6578-9 / 9781484265789
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75