Pseudodifferential Analysis on Conformally Compact Spaces
2003
American Mathematical Society (Verlag)
978-0-8218-3272-1 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-3272-1 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
The $0$-calculus on a manifold with boundary is a micro-localization of the Lie algebra of vector fields that vanish at the boundary. It has been used by Mazzeo, Melrose to study the Laplacian of a conformally compact metric. We give a complete characterization of those $0$-pseudodifferential operators that are Fredholm between appropriate weighted Sobolev spaces, and describe $C^{*}$-algebras that are generated by $0$-pseudodifferential operators. An important step is understanding the so-called reduced normal operator, or, almost equivalently, the infinite dimensional irreducible representations of $0$-pseudodifferential operators. Since the $0$-calculus itself is not closed under holomorphic functional calculus, we construct submultiplicative Frechet $*$-algebras that contain and share many properties with the $0$-calculus, and are stable under holomorphic functional calculus ($/Psi^{*}$-algebras in the sense of Gramsch). There are relations to elliptic boundary value problems.
Part 1. Fredholm theory for $0$-pseudodifferential operators: Review of basic objects of $0$-geometry The small $0$-calculus and the $0$-calculus with bounds The $b$-$c$-calculus on an interval The reduced normal operator Weighted $0$-Sobolev spaces Fredholm theory for $0$-pseudodifferential operators Part 2. Algebras of $0$-pseudodifferential operators of order $0$: $C^*$-algebras of $0$-pseudodifferential operators $/Psi^*$-algebras of $0$-pseudodifferential operators Appendix A. Spaces of conormal functions Bibliography Notations Index.
| Erscheint lt. Verlag | 1.5.2003 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Zusatzinfo | bibliography |
| Verlagsort | Providence |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 0-8218-3272-7 / 0821832727 |
| ISBN-13 | 978-0-8218-3272-1 / 9780821832721 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90
Eine anwendungsorientierte Einführung
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95