Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Integration von python-basierten Vorhersagemodellen in ein Monitoring-Webdashboard (eBook)

eBook Download: PDF
2020 | 1. Auflage
GRIN Verlag
978-3-346-22700-3 (ISBN)

Lese- und Medienproben

Integration von python-basierten Vorhersagemodellen in ein Monitoring-Webdashboard - Sebastian Steindl
Systemvoraussetzungen
36,99 inkl. MwSt
(CHF 36,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Bachelorarbeit aus dem Jahr 2020 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1,0, Fachhochschule Amberg-Weiden, Sprache: Deutsch, Abstract: In dieser Arbeit sollte mittels Deep Learning ein Modell erstellt werden, mit dem sich die Auslastung eines Servers in einem Rechenzentrum vorhersagen lässt. Dafür sollte evaluiert werden, welche Modell-Architektur für diese Zeitreihenvorhersage am besten geeignet sind. Dafür wurde zunächst eine theoretische Untersuchung durchgeführt und anschließend ein Vergleich der geeigneten Modell-Architekturen angestellt. Es stellte sich heraus, dass ein Convolutional Neural Network (CNN) mit einer Long Short Term Memory (LSTM) Schicht die besten Prognosen erzeugt.

Es wurde untersucht, wie sich die Hauptkomponentenanalyse zur Dimensionsreduktion auf die Modelle auswirkt. Dies zeigte, dass die Effekte stark von der Architektur abhängen. Die System-Architektur einer Webanwendung wurde so erweitert, dass es möglich ist, neben der historischen Serverauslastung auch Prognosen anzuzeigen. Die Visualisierungen der aufgezeichneten Daten wurden um die Vorhersagen erweitert.

Die Arbeit stellt schließlich eine Möglichkeit dar, wie der Lebenszyklus des Prognosemodells in einem produktiven System mit stetiger Auslastungsmessung integriert werden kann.
Erscheint lt. Verlag 18.8.2020
Verlagsort München
Sprache deutsch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Deep learning • Forecast • Keras • Künstliche Intelligenz • Monitoring • Monitoring-Webdashboard • Neuronale Netze • Serverauslastung • Timeseries • Vorhersagemodelle • Zeitreihenvorhersage
ISBN-10 3-346-22700-6 / 3346227006
ISBN-13 978-3-346-22700-3 / 9783346227003
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55