Statistical Dynamics and Reliability Theory for Mechanical Structures
1. Fundamentals of the Probability Theory and the Theory of Random Processes.- 1.1 Brief Information on the Probability Theory.- 1.2 The Distribution Function and the Probability Density of a Random Variable.- 1.3 Numerical Characteristics of Random Quantities and Their Principal Properties.- 1.4 Probability Density Distribution Laws.- 1.5 Determination of the Probability of a Normally Distributed Random Quantity Lying in the Given Range.- 1.7 Complex Random Quantities.- 1.8 Numerical Characteristics of Functions of Random Arguments.- 2. Non-Stationary Random Functions (Processes).- 2.1 Introduction.- 2.2 Probability Characteristics of Non-Stationary Random Functions.- 2.3 Random Function Systems and Their Probability Characteristics.- 2.4 Random Functions Linear Transformations.- 2.5 The Probabilistic Characteristics of the Linear Differential Equations at Non-Stationary Random Disturbances.- 3. Stationary Random Functions (Processes).- 3.1 Probability Characteristics of Stationary Random Functions.- 3.2 The Ergodic Property of a Stationary Random Function.- 3.3 Derivatives and Integrals of Stationary Functions.- 3.4 The Spectral Representation of Stationary Random Processes.- 3.5 Cross-Spectral Densities and their Properties.- 3.6 Determination of the Spectral Densities of the Linear Differential Equations with Constant Coefficients Solutions.- 4. Fundamentals of the Markov Processes Theory.- 4.1 Continuous One-Dimensional Markov Processes.- 4.2 The Fokker-Planck-Kolmogorov Equation.- 4.3 Multidimensional Markov Processes.- 4.4 Determination of the Probability of Attaining a Random Function Possible Values Area Boundaries.- 5. Random Vibrations of Systems with One Degree of Freedom.- 5.1 Free Random Vibrations of Linear Systems.- 5.2 Forced Random Vibrations of LinearSystems.- 5.3 Vibrations Caused by Random Kinematic Excitation.- 5.4 The Problem of Overshoots at Random Vibrations.- 5.5 Nonlinear Random Vibrations.- 6. Random Vibrations of Systems with Finite Number of Degrees of Freedom.- 6.1 Free Random Vibrations of Linear Systems.- 6.2 Vibrations at Random Pulse Loading.- 6.3 Non-Stationary Random Vibrations of Linear Systems.- 6.4 The Method of Principal Coordinates in Non-Stationary Vibrations Analysis.- 6.5 Forced Stationary Random Vibrations of Linear Systems.- 7. Random Vibrations of Strings; Longitudinal and Torsional Vibrations of Straight Rods.- 7.1 Introduction.- 7.2 Equations of Small Vibrations.- 7.3 Solving Equations of Small Vibrations.- 8. Random Vibrations of Rods.- 8.1 Nonlinear Equations of Motion of Three-Dimensional Curvilinear Rods.- 8.2 Equations of the Motion of a Rod in the Attached Coordinate System.- 8.3 Equation of Small Vibrations of Rods.- 8.4 Determination of Eigenvalues and Eigenvectors.- 8.5 Non-Stationary Random Vibrations of Rods.- 8.6 Stationary Random Vibrations of Rods.- 9. Fundamentals of Reliability Theory.- 9.1 Introduction.- 9.2 Elementary Problems of Reliability Theory.- 9.3 Possible Causes of Failures.- 9.4 Determination of Numerical Values of No-Failure Operation Probability (Reliability).- 9.5 Determination of Reliability at the Linear Dependence of a Stress State on Random Loads.- 9.6 Determination of the Probability of No-Failure Operation at the Nonlinear Dependence of the Random Quantity F on External Loads.- 10. Random Processes at the Action of Random Functions Bounded in Absolute Value.- 10.1 Introduction.- 10.2 Determining the Maximum Values of the Components of the Systems State Vector.- 10.3 Areas of Possible Values of the System State Vector at the Action of Independent Excitations.- 10.4 Projections of the Area of Possible Values of the System State Vector onto Two-Dimensional Planes.- 10.5 Determination of the Maximum Values of Dynamic Reactions.- 10.6 Areas of Possible Values of the System State Vector in the Case of Several Sections of Motion.- 10.7 Areas of Possible Values of the System State Vector at the Action of Dependent Random Excitations.- 10.8 Determination of the Maximum Values of Linear Functionals at Independent Excitations.- 10.9 Maximum Value of a Linear Functional at Dependent Excitations.- 10.10Vibration Protection of Mechanical Systems.- A. Appendices.- A.1 Elementary Generalized Functions.- A.3 Correlation Functions and Spectral Densities Corresponding to Them.- A.4 Hiawatha Designs an Experiment.- References.
| Erscheint lt. Verlag | 7.1.2003 |
|---|---|
| Reihe/Serie | Foundations of Engineering Mechanics |
| Übersetzer | Nikolay Reshetov |
| Zusatzinfo | XII, 448 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 802 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
| Technik ► Maschinenbau | |
| Schlagworte | Calculus • Correlation • Design • differential equation • Dynamisches System • Dynamische Systeme • Hardcover, Softcover / Technik/Maschinenbau, Fertigungstechnik • HC/Technik/Maschinenbau, Fertigungstechnik • Markov • Mechanik • Numerical Methods • Probability Theory • Random Variable • Technische Zuverlässigkeit • Transformation • Vibration |
| ISBN-13 | 9783540442974 / 9783540442974 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich