Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hankel Operators and Their Applications - Vladimir Peller

Hankel Operators and Their Applications

(Autor)

Buch | Hardcover
784 Seiten
2003 | 2003 ed.
Springer-Verlag New York Inc.
9780387955483 (ISBN)
CHF 329,50 inkl. MwSt
The purpose of this book is to describe the theory of Hankel operators, one of the most important classes of operators on spaces of analytic func­ tions. Hankel operators admit various useful realizations, such as operators on spaces of analytic functions, integral operators on function spaces on (0,00), operators on sequence spaces.
The purpose of this book is to describe the theory of Hankel operators, one of the most important classes of operators on spaces of analytic func­ tions. Hankel operators can be defined as operators having infinite Hankel matrices (i. e. , matrices with entries depending only on the sum of the co­ ordinates) with respect to some orthonormal basis. Finite matrices with this property were introduced by Hankel, who found interesting algebraic properties of their determinants. One of the first results on infinite Han­ kel matrices was obtained by Kronecker, who characterized Hankel matri­ ces of finite rank as those whose entries are Taylor coefficients of rational functions. Since then Hankel operators (or matrices) have found numerous applications in classical problems of analysis, such as moment problems, orthogonal polynomials, etc. Hankel operators admit various useful realizations, such as operators on spaces of analytic functions, integral operators on function spaces on (0,00), operators on sequence spaces. In 1957 Nehari described the bounded Hankel operators on the sequence space £2. This description turned out to be very important and started the contemporary period of the study of Hankel operators. We begin the book with introductory Chapter 1, which defines Hankel operators and presents their basic properties. We consider different realiza­ tions of Hankel operators and important connections of Hankel operators with the spaces BMa and V MO, Sz. -Nagy-Foais functional model, re­ producing kernels of the Hardy class H2, moment problems, and Carleson imbedding operators.

1. An Introduction to Hankel Operators.- 2. Vectorial Hankel Operators.- 3. Toeplitz Operators.- 4. Singular Values of Hankel Operators.- 5. Parametrization of Solutions of the Nehari Problem.- 6. Hankel Operators and Schatten—von Neumann Classes.- 7. Best Approximation by Analytic and Meromorphic Functions.- 8. An Introduction to Gaussian Spaces.- 9. Regularity Conditions for Stationary Processes.- 10. Spectral Properties of Hankel Operators.- 11. Hankel Operators in Control Theory.- 12. The Inverse Spectral Problem for Self-Adjoint Hankel Operators.- 13. Wiener-Hopf Factorizations and the Recovery Problem.- 14. Analytic Approximation of Matrix Functions.- 15. Hankel Operators and Similarity to a Contraction.- Appendix 1.- Appendix 2.- References.- Author Index.

Erscheint lt. Verlag 14.1.2003
Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo XVI, 784 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-13 9780387955483 / 9780387955483
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95