Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Local Analysis for the Odd Order Theorem - Helmut Bender, George Glauberman

Local Analysis for the Odd Order Theorem

Buch | Softcover
188 Seiten
1995
Cambridge University Press (Verlag)
978-0-521-45716-3 (ISBN)
CHF 109,95 inkl. MwSt
This book presents a new version of the local analysis section of the Feit–Thompson theorem. It includes a recent (1991) significant improvement by Feit and Thompson and a short revision by T. Peterfalvi of the separate final section of the second half of the proof.
In 1963 Walter Feit and John G. Thompson published a proof of a 1911 conjecture by Burnside that every finite group of odd order is solvable. This proof, which ran for 255 pages, was a tour-de-force of mathematics and inspired intense effort to classify finite simple groups. This book presents a revision and expansion of the first half of the proof of the Feit–Thompson theorem. Simpler, more detailed proofs are provided for some intermediate theorems. Recent results are used to shorten other proofs. The book will make the first half of this remarkable proof accessible to readers familiar with just the rudiments of group theory.

Part I. Preliminary Results: 1. Notation and elementary properties of solvable groups; 2. General results on representations; 3. Actions of Frobenius groups and related results; 4. p-Groups of small rank; 5. Narrow p-groups; 6. Additional results; Part II. The Uniqueness Theorem: 7. The transitivity theorem; 8. The fitting subgroup of a maximal subgroup; 9. The uniqueness theorem; Part III. Maximal Subgroups: 10. The subgroups Ma and Me; 11. Exceptional maximal subgroups; 12. The subgroup E; 13. Prime action; Part IV. The Family of All Maximal Subgroups of G: 14. Maximal subgroups of type p and counting arguments; 15. The subgroup Mf; 16. The main results; Appendix; Prerequisites and p-stability.

Erscheint lt. Verlag 27.1.1995
Reihe/Serie London Mathematical Society Lecture Note Series
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 152 x 229 mm
Gewicht 280 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-521-45716-5 / 0521457165
ISBN-13 978-0-521-45716-3 / 9780521457163
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95