Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Generalised Euler-Jacobi Inversion Formula and Asymptotics beyond All Orders - Vic Kowalenko, N. E. Frankel, L. Glasser, T. Taucher

Generalised Euler-Jacobi Inversion Formula and Asymptotics beyond All Orders

Buch | Softcover
142 Seiten
1995
Cambridge University Press (Verlag)
978-0-521-49798-5 (ISBN)
CHF 87,25 inkl. MwSt
This work presents exciting new developments in understanding the subdominant exponential terms of asymptotic expansions which have previously been neglected. All researchers interested in the fascinating area of exponential asymptotics will find this a most valuable book.
This work, first published in 1995, presents developments in understanding the subdominant exponential terms of asymptotic expansions which have previously been neglected. By considering special exponential series arising in number theory, the authors derive the generalised Euler-Jacobi series, expressed in terms of hypergeometric series. Dingle's theory of terminants is then employed to show how the divergences in both dominant and subdominant series of a complete asymptotic expansion can be tamed. Numerical results are used to illustrate that a complete asymptotic expansion can be made to agree with exact results for the generalised Euler-Jacobi series to any desired degree of accuracy. All researchers interested in the fascinating area of exponential asymptotics will find this a most valuable book.

1. Introduction; 2. Exact evaluation of Srp/q(a); 3. Properties of Sp/q(a); 4. Steepest descent; 5. Special cases of Sp/q(a) for p/q<2; 6. Integer cases for Sp/q(a) where 2

Erscheint lt. Verlag 14.9.1995
Reihe/Serie London Mathematical Society Lecture Note Series
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 152 x 229 mm
Gewicht 220 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-521-49798-1 / 0521497981
ISBN-13 978-0-521-49798-5 / 9780521497985
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich